A235808 Numbers k such that k^3 has one or more occurrences of exactly six different digits.
59, 66, 69, 73, 75, 76, 84, 88, 93, 97, 107, 112, 113, 115, 116, 118, 124, 128, 129, 131, 139, 147, 148, 151, 156, 159, 161, 166, 168, 169, 174, 178, 181, 183, 184, 187, 189, 193, 194, 196, 207, 219, 226, 232, 234, 235, 236, 238, 240, 241, 246, 253, 255, 262
Offset: 1
Examples
59 is in the sequence because 59^3 = 205379, which contains exactly six different digits: 0, 2, 3, 5, 7, 9. 107 is in the sequence because 107^3 = 1225043, which contains exactly six different digits: 0, 1, 2, 3, 4, 5.
Links
- Colin Barker, Table of n, a(n) for n = 1..1000
Programs
-
Magma
[n: n in [0..300] | #Set(Intseq(n^3)) eq 6]; // Bruno Berselli, Jan 19 2014
-
Mathematica
Select[Range[300], Length[Union[IntegerDigits[#^3]]] == 6 &] (* Bruno Berselli, Jan 19 2014 *) Select[Range[300],Count[DigitCount[#^3],0]==4&] (* Harvey P. Dale, May 28 2025 *)
-
PARI
s=[]; for(n=1, 300, if(#vecsort(eval(Vec(Str(n^3))),,8)==6, s=concat(s, n))); s
-
Python
A235808_list, m = [], [6, -6, 1, 0] for n in range(1,10**4+1): for i in range(3): m[i+1] += m[i] if len(set(str(m[-1]))) == 6: A235808_list.append(n) # Chai Wah Wu, Nov 05 2014