cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A235811 Numbers n such that n^3 has one or more occurrences of exactly nine different digits.

Original entry on oeis.org

1018, 1028, 1112, 1452, 1475, 1484, 1531, 1706, 1721, 1733, 1818, 1844, 1895, 1903, 2008, 2033, 2208, 2214, 2217, 2223, 2257, 2274, 2277, 2327, 2329, 2336, 2354, 2394, 2403, 2524, 2525, 2589, 2647, 2686, 2691, 2694, 2727, 2733, 2784, 2842, 2866, 2884, 2890
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			1018 is in the sequence because 1018^3 = 1054977832, which contains exactly nine different digits.
		

Crossrefs

Programs

  • Mathematica
    Select[Range[3000],Count[DigitCount[#^3],0]==1&] (* Harvey P. Dale, Dec 17 2021 *)
  • PARI
    s=[]; for(n=1, 3000, if(#vecsort(eval(Vec(Str(n^3))),,8)==9, s=concat(s, n))); s
    
  • Python
    A235811_list, m = [], [6, -6, 1, 0]
    for n in range(1,10**4+1):
        for i in range(3):
            m[i+1] += m[i]
        if len(set(str(m[-1]))) == 9:
            A235811_list.append(n) # Chai Wah Wu, Nov 05 2014

A235809 Numbers k such that k^3 has one or more occurrences of exactly seven different digits.

Original entry on oeis.org

135, 145, 203, 221, 223, 225, 227, 233, 243, 244, 245, 247, 249, 254, 257, 265, 272, 273, 275, 276, 299, 313, 327, 329, 334, 338, 341, 345, 347, 352, 365, 366, 368, 382, 384, 388, 393, 395, 398, 403, 405, 409, 411, 412, 434, 439, 447, 452, 455, 473, 486, 493
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			135 is in the sequence because 135^3 = 2460375, which contains exactly seven different digits.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1200] | #Set(Intseq(n^3)) eq 7]; // Vincenzo Librandi, Nov 07 2014
    
  • Mathematica
    Select[Range[500], Length[Union[IntegerDigits[#^3]]]==7&] (* Vincenzo Librandi, Nov 07 2014 *)
  • PARI
    s=[]; for(n=1, 600, if(#vecsort(eval(Vec(Str(n^3))),,8)==7, s=concat(s, n))); s
    
  • PARI
    for(n=0,10^3,if(#Set(digits(n^3))==7,print1(n,", "))); \\ Joerg Arndt, Nov 10 2014
    
  • Python
    from itertools import count, islice
    def A235809gen(): return filter(lambda n:len(set(str(n**3))) == 7,count(0))
    A235809_list = list(islice(A235809gen(),26)) # Chai Wah Wu, Dec 23 2021
Showing 1-2 of 2 results.