cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A235807 Numbers n such that n^3 has one or more occurrences of exactly five different digits.

Original entry on oeis.org

22, 24, 27, 29, 32, 35, 38, 41, 47, 48, 49, 51, 52, 54, 55, 57, 61, 63, 65, 71, 72, 82, 85, 87, 89, 94, 96, 102, 103, 104, 105, 108, 109, 119, 120, 123, 125, 126, 127, 130, 133, 134, 136, 137, 138, 141, 143, 144, 149, 152, 153, 154, 155, 158, 162, 165, 167
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			22 is in the sequence because 22^3 = 10648, which contains exactly five different digits: 0, 1, 4, 6, 8.
87 is in the sequence because 87^3 = 658503, which contains exactly five different digits: 0, 3, 5, 6, 8.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..200] | #Set(Intseq(n^3)) eq 5]; // Bruno Berselli, Jan 19 2014
    
  • Mathematica
    Select[Range[200], Length[Union[IntegerDigits[#^3]]] == 5 &] (* Bruno Berselli, Jan 19 2014 *)
  • PARI
    s=[]; for(n=1, 200, if(#vecsort(eval(Vec(Str(n^3))),,8)==5, s=concat(s, n))); s
    
  • Python
    A235807_list, m = [], [6, -6, 1, 0]
    for n in range(1,10**5+1):
        for i in range(3):
            m[i+1] += m[i]
        if len(set(str(m[-1]))) == 5:
            A235807_list.append(n) # Chai Wah Wu, Nov 05 2014

A235808 Numbers k such that k^3 has one or more occurrences of exactly six different digits.

Original entry on oeis.org

59, 66, 69, 73, 75, 76, 84, 88, 93, 97, 107, 112, 113, 115, 116, 118, 124, 128, 129, 131, 139, 147, 148, 151, 156, 159, 161, 166, 168, 169, 174, 178, 181, 183, 184, 187, 189, 193, 194, 196, 207, 219, 226, 232, 234, 235, 236, 238, 240, 241, 246, 253, 255, 262
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			59 is in the sequence because 59^3 = 205379, which contains exactly six different digits: 0, 2, 3, 5, 7, 9.
107 is in the sequence because 107^3 = 1225043, which contains exactly six different digits: 0, 1, 2, 3, 4, 5.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..300] | #Set(Intseq(n^3)) eq 6]; // Bruno Berselli, Jan 19 2014
    
  • Mathematica
    Select[Range[300], Length[Union[IntegerDigits[#^3]]] == 6 &] (* Bruno Berselli, Jan 19 2014 *)
    Select[Range[300],Count[DigitCount[#^3],0]==4&] (* Harvey P. Dale, May 28 2025 *)
  • PARI
    s=[]; for(n=1, 300, if(#vecsort(eval(Vec(Str(n^3))),,8)==6, s=concat(s, n))); s
    
  • Python
    A235808_list, m = [], [6, -6, 1, 0]
    for n in range(1,10**4+1):
        for i in range(3):
            m[i+1] += m[i]
        if len(set(str(m[-1]))) == 6:
            A235808_list.append(n) # Chai Wah Wu, Nov 05 2014

A235809 Numbers k such that k^3 has one or more occurrences of exactly seven different digits.

Original entry on oeis.org

135, 145, 203, 221, 223, 225, 227, 233, 243, 244, 245, 247, 249, 254, 257, 265, 272, 273, 275, 276, 299, 313, 327, 329, 334, 338, 341, 345, 347, 352, 365, 366, 368, 382, 384, 388, 393, 395, 398, 403, 405, 409, 411, 412, 434, 439, 447, 452, 455, 473, 486, 493
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			135 is in the sequence because 135^3 = 2460375, which contains exactly seven different digits.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1200] | #Set(Intseq(n^3)) eq 7]; // Vincenzo Librandi, Nov 07 2014
    
  • Mathematica
    Select[Range[500], Length[Union[IntegerDigits[#^3]]]==7&] (* Vincenzo Librandi, Nov 07 2014 *)
  • PARI
    s=[]; for(n=1, 600, if(#vecsort(eval(Vec(Str(n^3))),,8)==7, s=concat(s, n))); s
    
  • PARI
    for(n=0,10^3,if(#Set(digits(n^3))==7,print1(n,", "))); \\ Joerg Arndt, Nov 10 2014
    
  • Python
    from itertools import count, islice
    def A235809gen(): return filter(lambda n:len(set(str(n**3))) == 7,count(0))
    A235809_list = list(islice(A235809gen(),26)) # Chai Wah Wu, Dec 23 2021

A235810 Numbers n such that n^3 has one or more occurrences of exactly eight different digits.

Original entry on oeis.org

289, 297, 302, 319, 467, 494, 515, 557, 562, 595, 621, 623, 676, 682, 709, 712, 721, 862, 887, 909, 939, 945, 949, 963, 984, 987, 1012, 1015, 1016, 1025, 1029, 1043, 1049, 1065, 1075, 1087, 1104, 1106, 1107, 1114, 1118, 1132, 1137, 1154, 1161, 1167, 1178
Offset: 1

Views

Author

Colin Barker, Jan 19 2014

Keywords

Examples

			289 is in the sequence because 289^3 = 24137569, which contains exactly eight different digits.
		

Crossrefs

Programs

  • Magma
    [n: n in [0..1200] | #Set(Intseq(n^3)) eq 8]; // Vincenzo Librandi, Nov 07 2014
  • PARI
    s=[]; for(n=1, 1500, if(#vecsort(eval(Vec(Str(n^3))),,8)==8, s=concat(s, n))); s
    
  • Python
    A235810_list, m = [], [6, -6, 1, 0]
    for n in range(1,10**3+1):
        for i in range(3):
            m[i+1] += m[i]
        if len(set(str(m[-1]))) == 8:
            A235810_list.append(n) # Chai Wah Wu, Nov 05 2014
    
Showing 1-4 of 4 results.