A249413
Primes in the hexanacci numbers sequence A000383.
Original entry on oeis.org
11, 41, 72426721, 143664401, 565262081, 4160105226881, 253399862985121, 997027328131841, 212479323351825962211841, 188939838859312612896128881921, 22828424707602602744356458636161, 661045104283639247572028952777478721
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192.
-
a={1,1,1,1,1,1}; For[n=6, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]
Original entry on oeis.org
13, 151, 277, 36313, 225949, 7129366889, 933784181621, 19397107178326126131136629644898891137047, 401151570474397232184569825031979125080583558010764826781295643008140597581801
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A242324,
A214827,
A214828.
-
a={1,6,6}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
Select[LinearRecurrence[{1,1,1},{1,6,6},350],PrimeQ] (* Harvey P. Dale, Jul 21 2018 *)
-
my(x='x+O('x^500)); select(isprime, Vec((1+5*x-x^2)/(1-x-x^2-x^3))) \\ Michel Marcus, Jun 16 2025
Original entry on oeis.org
7, 29, 1087, 1999, 3677, 6763, 5487349608898607, 115507410616162687, 878001744429057971864287, 210582098197038415344728317608265501, 870277059555114378903885645581650740066907
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A214827,
A242324,
A214827,
A214828,
A214829,
A242572,
A242576,
A243622.
-
f:= gfun:-rectoproc({a(n) = a(n-1) + a(n-2) + a(n-3), a(0) = 1, a(1) = 7, a(2) = 7},a(n),remember):
select(isprime, map(f, [$2..1000])); # Robert Israel, Sep 02 2024
-
a={1,7,7}; Print["7"]; Print["7"]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
Original entry on oeis.org
2, 11, 2713, 4066709, 289593761, 30236674150891013353640837416685668536004108580572237299601, 45323907186142905348893078704293178796516046414129798590935901
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A242324,
A214827-
A214829,
A242572,
A242576,
A243622,
A244001,
A214831,
A244002,
A141036,
A246517.
-
a246518 n = a246518_list !! (n-1)
a246518_list = filter ((== 1) . a010051'') $ a141036_list
-- Reinhard Zumkeller, Sep 15 2014
-
a={2,1,1}; Print[2]; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
Original entry on oeis.org
17, 199, 2273, 547609, 71724269, 131339891338466303, 31640376596545867021, 2253137772896035203743
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A214827,
A242324,
A214827,
A214828,
A214829,
A242572,
A242576,
A243622,
A214829,
A244001.
-
a={1,8,8}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
A253333
Primes in the 7th-order Fibonacci numbers A060455.
Original entry on oeis.org
7, 13, 97, 193, 769, 1531, 3049, 6073, 12097, 24097, 95617, 379399, 2998753, 187339729, 373174033, 2949551617, 184265983633, 731152932481, 88025699967469825543, 175344042716296888429, 4979552865927484193343796114081304399449
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192,
A060455,
A253318.
-
a={1,1,1,1,1,1,1}; step=7; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[7]]=sum]; lst
With[{c=PadRight[{},7,1]},Select[LinearRecurrence[c,c,150],PrimeQ]] (* Harvey P. Dale, May 08 2015 *)
-
lista(nn) = {gf = ( -1+x^2+2*x^3+3*x^4+4*x^5+5*x^6 ) / ( -1+x+x^2+x^3+x^4+x^5+x^6+x^7 ); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 11 2015
A254413
Primes in the 8th-order Fibonacci numbers A123526.
Original entry on oeis.org
29, 113, 449, 226241, 14307889, 113783041, 1820091580429249, 233322881089059894782836851617, 29566627412209231076314948970028097, 59243719929958343565697204780596496129, 7507351981539044730893385057192143660843521
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192,
A060455,
A253318,
A079262,
A253705,
A123526,
A254412.
-
a={1,1,1,1,1,1,1,1}; step=8; lst={}; For[n=step+1,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
Select[With[{lr=PadRight[{},8,1]},LinearRecurrence[lr,lr,200]],PrimeQ] (* Harvey P. Dale, Dec 03 2022 *)
Original entry on oeis.org
19, 37, 223, 409, 53617, 23757289, 3111662089, 407556643177, 1372675688565303822697, 23548271681390871672120649, 1676892190264006259992141409, 64923481849284379431377700019
Offset: 1
Cf.
A001590,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554.
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A214827,
A242324,
A214827,
A214828,
A214829,
A242572,
A242576,
A243622,
A214829,
A244001,
A214831,
A244002.
-
a={1,9,9}; For[n=3, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[3]]=sum]
A248921
Primes in the pentanacci numbers sequence A000322.
Original entry on oeis.org
5, 17, 977, 28697, 56417, 1428864769, 2809074173, 21344178433, 626815657409, 18407729752001, 2317881588988297338942875602391948125494800020122167809, 136507010958920295813169620935932629930648432530102206331972221346174230852977164801
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920.
-
a={1,1,1,1,1}; For[n=5, n<=1000, n++, sum=Plus@@a; If[PrimeQ[sum], Print[sum]]; a=RotateLeft[a]; a[[5]]=sum]
Select[With[{c={1,1,1,1,1}},LinearRecurrence[c,c,300]],PrimeQ] (* Harvey P. Dale, Nov 30 2019 *)
A253706
Primes in the 8th-order Fibonacci numbers A079262.
Original entry on oeis.org
2, 509, 128257, 133294824621464999938178340471931877, 4596852049500861351052672455121859744010232939954169259264638023409631672658340253083284317818242062413
Offset: 1
Cf.
A001590,
A001631,
A100683,
A231574,
A231575,
A232543,
A214899,
A020992,
A233554,
A214727,
A234696,
A141523,
A235862,
A214825,
A235873,
A001630,
A241660,
A247027,
A000288,
A247561,
A000322,
A248920,
A000383,
A247192,
A060455,
A253318,
A079262,
A253705.
-
a={0,0,0,0,0,0,0,1}; step=8; lst={}; For[n=step,n<=1000,n++, sum=Plus@@a; If[PrimeQ[sum], AppendTo[lst,sum]]; a=RotateLeft[a]; a[[step]]=sum]; lst
-
lista(nn) = {gf = x^7/(1-x-x^2-x^3-x^4-x^5-x^6-x^7-x^8); for (n=0, nn, if (isprime(p=polcoeff(gf+O(x^(n+1)), n)), print1(p, ", ")););} \\ Michel Marcus, Jan 12 2015
Showing 1-10 of 16 results.
Comments