A236020 Natural numbers n sorted by increasing values of k(n) = log_tau(n) (sigma(n)), where sigma(n) = A000203(n) = the sum of divisors of n and tau(n) = A000005(n) = the number of divisors of n.
1, 2, 4, 6, 12, 8, 24, 3, 18, 36, 30, 60, 10, 20, 48, 72, 120, 16, 40, 84, 180, 42, 90, 240, 144, 360, 96, 168, 28, 420, 108, 80, 252, 720, 14, 15, 210, 840, 54, 56, 336, 480, 216, 126, 32, 504, 288, 9, 540, 1260, 300, 132, 140, 1680, 192, 2520, 1080, 600, 630
Offset: 1
Keywords
Examples
For number 1; k(1) = 1. For number 2; k(2) = log_tau(2) (sigma(2)) = log_2 (3) = 1.5849625007... = A020857.
Links
- Michel Marcus, Table of n, a(n) for n = 1..1288
Programs
-
Mathematica
A[nn_] := Ordering[ N[ Join[ {1}, Table[ Log[DivisorSigma[0, i], DivisorSigma[1, i]], {i, 2, nn} ] ] ] ]; A236020[nn_] := A[nn^2][[1 ;; nn]]; A236020[59] (* Robert P. P. McKone, Jan 17 2021 *)
-
PARI
\\ warning: does not generate all the terms up to nn f(k) = if (k==1, 1, log(sigma(k)) / log(numdiv(k))); lista(nn) = vecsort(vector(nn, k, f(k)),, 1); \\ Michel Marcus, Jan 16 2021
Comments