cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A386479 a(0) = 0; thereafter a(n) = 2*n^2 - 3*n + 5.

Original entry on oeis.org

0, 4, 7, 14, 25, 40, 59, 82, 109, 140, 175, 214, 257, 304, 355, 410, 469, 532, 599, 670, 745, 824, 907, 994, 1085, 1180, 1279, 1382, 1489, 1600, 1715, 1834, 1957, 2084, 2215, 2350, 2489, 2632, 2779, 2930, 3085, 3244, 3407, 3574, 3745, 3920, 4099, 4282, 4469, 4660, 4855, 5054, 5257, 5464, 5675, 5890, 6109, 6332, 6559, 6790
Offset: 0

Views

Author

N. J. A. Sloane, Jul 25 2025

Keywords

Comments

For n>0, a(n) is the maximum number of regions the plane can be divided into by drawing two n-chains (both finite and infinite regions are counted). See A386478 for further information.
We do not at present have an explicit construction that will achieve a(n) for n > 5.

Crossrefs

A column of the array in A386478.
Essentially the same (up to offset, initial terms, and the addition of a small constant) as several other sequences, including A014105, A014107, A084849, A096376, A236257, ....

Programs

  • Mathematica
    LinearRecurrence[{3,-3,1},{5,4,7},60] (* or *) a[n_]:=2n^2-3n+5;Array[a,60,0] (* James C. McMahon, Jul 26 2025 *)

Formula

From Stefano Spezia, Jul 26 2025: (Start)
G.f.: -x*(4-5*x+5*x^2) / (x-1)^3.
E.g.f.: exp(x)*(5 - x + 2*x^2) - 5. (End)

Extensions

Changed a(0) so as to match changes to A386478. - N. J. A. Sloane, Jul 26 2025

A236267 a(n) = 8*n^2 + 3*n + 1.

Original entry on oeis.org

1, 12, 39, 82, 141, 216, 307, 414, 537, 676, 831, 1002, 1189, 1392, 1611, 1846, 2097, 2364, 2647, 2946, 3261, 3592, 3939, 4302, 4681, 5076, 5487, 5914, 6357, 6816, 7291, 7782, 8289, 8812, 9351, 9906, 10477, 11064, 11667, 12286, 12921, 13572, 14239, 14922, 15621, 16336
Offset: 0

Views

Author

Vladimir Shevelev, Jan 21 2014

Keywords

Comments

Positions a(n) of hexagonal numbers such that h(a(n)) = h(a(n)-1) + h(4*n+1), where h = A000384.
First bisection of A057029. The sequence contains infinitely many squares: 1, 676, 779689, 899760016, ... [Bruno Berselli, Jan 24 2014]

Examples

			For n=5, A000384(a(5)) = 93096 = A000384(a(5)-1) + A000384(4*5+1) = 92235 + 861.
		

Crossrefs

Programs

  • Magma
    [8*n^2+3*n+1: n in [0..50]]; // Bruno Berselli, Jan 24 2014
  • Mathematica
    Table[8 n^2 + 3 n + 1, {n, 0, 50}] (* Bruno Berselli, Jan 24 2014 *)
    LinearRecurrence[{3,-3,1},{1,12,39},50] (* Harvey P. Dale, May 26 2019 *)
  • PARI
    Vec(-(6*x^2+9*x+1)/(x-1)^3 + O(x^100)) \\ Colin Barker, Jan 21 2014
    

Formula

From Colin Barker, Jan 21 2014: (Start)
G.f.: -(6*x^2 + 9*x + 1)/(x-1)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). (End)
E.g.f.: exp(x)*(1 + 11*x + 8*x^2). - Elmo R. Oliveira, Oct 19 2024

Extensions

More terms from Colin Barker, Jan 21 2014
a(44)-a(45) from Elmo R. Oliveira, Oct 19 2024
Showing 1-2 of 2 results.