A236313 Recurrence: a(2n) = 3a(n)-1, a(2n+1) = 1.
1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 41, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 122, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 41, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 365, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 41, 1, 2, 1, 5, 1, 2, 1, 14, 1, 2, 1, 5, 1, 2, 1, 122, 1, 2, 1, 5
Offset: 1
Links
Programs
-
Magma
[(1+3^Valuation(n,2))/2: n in [1..100]]; // Bruno Berselli, Jan 22 2014
-
Mathematica
t = {1}; Do[If[OddQ[n], AppendTo[t, 1], AppendTo[t, 3*t[[n/2]] - 1]], {n, 2, 100}]; t (* T. D. Noe, Apr 10 2014 *) a[n_] := a[n] =If[OddQ@ n, 1, 3 a[n/2] - 1]; Array[a, 92] (* Robert G. Wilson v, Jul 31 2018 *)
-
PARI
a(n)=(1+3^valuation(n,2))/2
Formula
a(n) = (1/2)*A061393(n), for n>=1.
Multiplicative with a(2^e) = (1 + 3^e)/2, a(p^e) = 1 for odd prime p. - Andrew Howroyd, Jul 31 2018
G.f.: Sum_{k>=0} 3^k * x^(2^k) / (1 + x^(2^k)). - Ilya Gutkovskiy, Dec 14 2020
Dirichlet g.f.: zeta(s)*(2^s-2)/(2^s-3). - Amiram Eldar, Dec 29 2022
Comments