A236428 a(n) = F(n+1)^2 + F(n+1)*F(n) - F(n)^2, where F = A000045.
1, 1, 5, 11, 31, 79, 209, 545, 1429, 3739, 9791, 25631, 67105, 175681, 459941, 1204139, 3152479, 8253295, 21607409, 56568929, 148099381, 387729211, 1015088255, 2657535551, 6957518401, 18215019649, 47687540549, 124847601995, 326855265439, 855718194319
Offset: 0
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- R. C. Alperin, A family of nonlinear recurrences and their linear solutions, Fib. Q., 57:4 (2019), 318-321.
- R. C. Alperin, A nonlinear recurrence and its relations to Chebyshev polynomials, Fib. Q., Vol. 58, No. 2 (2020), 140-142.
- Richard R. Forberg, Plot of a(n) mod 61
- Bridget Rozema and Maisie Smith, Edge Covers of Unions of Path and Cycle Graphs, 2024.
- Index entries for linear recurrences with constant coefficients, signature (2,2,-1).
Crossrefs
Programs
-
Magma
[Fibonacci(n+1)^2+Fibonacci(n+1)*Fibonacci(n)- Fibonacci(n)^2: n in [0..30]]; // Vincenzo Librandi, Jan 20 2016
-
Magma
F:=Fibonacci; [F(n+1)^2+F(n)*F(n-1): n in [0..30]]; // Bruno Berselli, Feb 15 2017
-
Mathematica
a[n_] := Fibonacci[n+1]^2 + Fibonacci[n+1]*Fibonacci[n] - Fibonacci[n]^2; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Feb 27 2014 *) LinearRecurrence[{2, 2, -1}, {1, 1, 5}, 40] (* Vincenzo Librandi, Jan 20 2016 *)
-
PARI
F=fibonacci; a(n)=F(n+1)^2 + F(n+1)*F(n) - F(n)^2; vector(33,n,a(n-1)) \\ Joerg Arndt, Feb 23 2014
-
PARI
Vec((x^2-x+1)/((x+1)*(x^2-3*x+1)) + O(x^100)) \\ Colin Barker, Dec 20 2014
-
PARI
a(n) = round((2^(-n)*(3*(-2)^n-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/5) \\ Colin Barker, Sep 28 2016
Formula
G.f.: (x^2 - x + 1)/((x + 1)*(x^2 - 3*x + 1)). - Joerg Arndt, Feb 23 2014
a(n) = (2*Lucas(2*n+1) + 3*(-1)^n)/5. - Ralf Stephan, Feb 27 2014
a(n) = 2*a(n-1) + 2*a(n-2)-a(n-3). - Colin Barker, Dec 20 2014
a(n) = F(n-1)*F(n+2) + F(n)*F(n+1). - J. M. Bergot, Dec 20 2014
a(n) = 2*F(n)*F(n+1) + (-1)^n. - Bruno Berselli, Oct 30 2015
a(n) = F(2*n+1) - F(n-1)^2 +(-1)^n for n>0. - J. M. Bergot, Jan 19 2016
a(n) = (2^(-n)*(3*(-2)^n-(3-sqrt(5))^n*(-1+sqrt(5))+(1+sqrt(5))*(3+sqrt(5))^n))/5. - Colin Barker, Sep 28 2016
a(n) = F(n+1)^2 + F(n)*F(n-1). See also A099016, tenth formula. - Bruno Berselli, Feb 15 2017
2*a(n) = L(n)*L(n+1) - F(n)*F(n+1), where L = A000032. - Bruno Berselli, Sep 27 2017
Comments