cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A236462 Primes p with prime(p) + 4 and prime(p) + 6 both prime.

Original entry on oeis.org

19, 59, 151, 181, 211, 229, 389, 571, 877, 983, 1039, 1259, 1549, 3023, 3121, 3191, 3259, 3517, 3719, 4099, 4261, 4463, 5237, 6947, 7529, 7591, 7927, 7933, 8317, 8389, 8971, 9403, 9619, 10163, 10939, 11131, 11717, 11743, 11839, 12301
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

According to the conjecture in A236460, this sequence should have infinitely many terms.
See A236464 for a similar sequence.

Examples

			a(1) = 19 with 19, prime(19) + 4 = 71 and prime(19) + 6 = 73 all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=p[n]=PrimeQ[Prime[n]+4]&&PrimeQ[Prime[n]+6]
    n=0;Do[If[p[Prime[m]],n=n+1;Print[n," ",Prime[m]]],{m,1,10000}]
    Select[Prime[Range[1500]],AllTrue[Prime[#]+{4,6},PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Feb 21 2018 *)
  • PARI
    s=[]; forprime(p=2, 12500, if(isprime(prime(p)+4) && isprime(prime(p)+6), s=concat(s, p))); s \\ Colin Barker, Jan 26 2014

A236468 Number of ordered ways to write n = k + m with k > 0 and m > 0 such that p = phi(k) + phi(m)/2 - 1, p + 2 and prime(p) - 2 are all prime, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 2, 2, 1, 3, 1, 1, 2, 2, 4, 0, 1, 2, 2, 1, 2, 1, 1, 2, 0, 3, 2, 2, 3, 4, 2, 1, 2, 5, 3, 4, 0, 6, 6, 1, 3, 1, 5, 4, 5, 2, 5, 1, 7, 1, 3, 2, 5, 1, 4, 1, 7, 0, 5, 4, 1, 8, 1, 5, 5, 1, 2, 5, 4, 4, 4, 4, 1, 5, 1, 7, 3, 3, 2, 2, 1, 8, 3, 3, 2, 2, 2, 6, 3, 7, 2, 6, 5, 1, 1, 5, 4, 9, 3
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

Conjecture: a(n) > 0 for every n = 250, 251, ....
This implies that there are infinitely many twin prime pairs {p, p + 2} with {prime(p) - 2, prime(p)} also a twin prime pair. It is stronger than the twin prime conjecture.

Examples

			 a(33) = 1 since 33 = 7 + 26 with phi(7) + phi(26)/2 - 1 = 11, 11 + 2 = 13 and prime(11) - 2 = 31 - 2 = 29 all prime.
a(278) = 1 since 278 = 61 + 217 with phi(61) + phi(217)/2 - 1 = 60 + 90 - 1 = 149, 149 + 2 = 151 and prime(149) - 2 = 859 - 2 = 857 all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[n+2]&&PrimeQ[Prime[n]-2]
    f[n_,k_]:=EulerPhi[k]+EulerPhi[n-k]/2-1
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-3}]
    Table[a[n],{n,1,100}]

A236472 a(n) = |{0 < k < n: p = prime(k) + phi(n-k), prime(p) + 2 and prime(p) + 6 are all prime}|, where phi(.) is Euler's totient function.

Original entry on oeis.org

0, 1, 1, 0, 1, 2, 2, 2, 2, 1, 2, 1, 2, 1, 0, 1, 1, 2, 3, 0, 1, 1, 1, 2, 0, 1, 1, 0, 0, 2, 0, 2, 2, 1, 0, 0, 3, 1, 2, 0, 2, 2, 2, 1, 0, 0, 4, 1, 0, 0, 0, 0, 5, 0, 1, 1, 1, 2, 1, 1, 3, 0, 0, 2, 2, 0, 2, 2, 2, 3, 1, 1, 2, 1, 1, 2, 2, 3, 3, 3, 2, 0, 0, 2, 1, 1, 3, 0, 0, 2, 0, 3, 0, 0, 1, 1, 0, 2, 0, 0
Offset: 1

Views

Author

Zhi-Wei Sun, Jan 26 2014

Keywords

Comments

Conjecture: a(n) > 0 for every n = 330, 331, ....
We have verified this for n up to 80000.
The conjecture implies that there are infinitely many prime triples of the form {prime(p), prime(p) + 2, prime(p) + 6} with p prime. See A236464 for such primes p.

Examples

			a(10) = 1 since prime(2) + phi(8) = 3 + 4 = 7, prime(7) + 2 = 17 + 2 = 19 and prime(7) + 6 = 23 are all prime.
a(877) = 1 since prime(784) + phi(877-784) = 6007 + 60 = 6067, prime(6067) + 2 = 60101 + 2 = 60103 and prime(6067) + 6 = 60107 are all prime.
		

Crossrefs

Programs

  • Mathematica
    p[n_]:=PrimeQ[n]&&PrimeQ[Prime[n]+2]&&PrimeQ[Prime[n]+6]
    f[n_,k_]:=Prime[k]+EulerPhi[n-k]
    a[n_]:=Sum[If[p[f[n,k]],1,0],{k,1,n-1}]
    Table[a[n],{n,1,100}]
Showing 1-3 of 3 results.