A236461 Sum of two consecutive primes that is also sum of two consecutive even positive squares.
52, 100, 340, 1460, 2452, 2740, 4420, 20404, 21220, 36452, 48052, 62660, 66980, 94180, 103060, 108580, 128020, 140452, 142580, 169364, 171700, 195940, 221780, 254900, 260644, 361252, 378452, 490052, 498004, 717604, 736900, 756452, 766324, 791284, 879140, 889780, 916660, 1016740, 1104100, 1164340, 1232452, 1283204
Offset: 1
Keywords
Examples
52 = 23 + 29 = 4^2 + 6^2.
Links
- Robert Israel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
count:= 0: R:= NULL: for m from 1 while count < 100 do y:= 8*m^2+8*m+4; if prevprime(y/2) + nextprime(y/2)=y then count:= count+1; R:= R, y; fi od: R; # Robert Israel, Jan 07 2020
-
Mathematica
With[{nn=100000},Intersection[Total/@Partition[Prime[Range[nn]],2,1],Total/@ Partition[Range[2,2nn,2]^2,2,1]]] (* Harvey P. Dale, Jul 03 2021 *)
-
PARI
v=vector(1300000); pp=3; forprime(p=5,#v/2,v[p+pp]++;pp=p);forstep(k=2,sqrtint(#v/2)-1,2,v[2*(k^2+2*k+2)]++);for(k=1,#v,if(v[k]==2,print1(k,", "))) \\ Hugo Pfoertner, Jan 07 2020
Comments