A236625
Total number of parts in all overcompositions of n.
Original entry on oeis.org
0, 2, 6, 24, 66, 180, 496, 1272, 3202, 7798, 18980, 45076, 106288, 246956, 568776, 1299184, 2944654, 6630660, 14838606, 33026000, 73126376, 161198136, 353812612, 773645124, 1685548792, 3660364490, 7924414752, 17107225340, 36832846344, 79107019964, 169505684844
Offset: 0
For n = 3 the 12 overcompositions of 3 are [3], [3'], [1, 2], [1', 2], [1, 2'], [1', 2'], [2, 1], [2', 1], [2, 1'], [2', 1'], [1, 1, 1], [1', 1, 1]. There are 24 parts, so a(3) = 24.
-
b:= proc(n, i, p) option remember; `if`(n=0, [p!, 0],
`if`(i<1, 0, add((p-> p+[0, p[1]*j])(1/j!*
`if`(j>0, 2, 1)*b(n-i*j, i-1, p+j)), j=0..n/i)))
end:
a:= n-> b(n$2, 0)[2]:
seq(a(n), n=0..35); # Alois P. Heinz, Apr 28 2016
-
b[n_, i_, p_] := b[n, i, p] = If[n == 0, {p!, 0}, If[i < 1, {0, 0}, Sum[# + {0, #[[1]]*j}&[1/j!*If[j > 0, 2, 1]*b[n - i*j, i - 1, p + j]], {j, 0, n/i}]]];
a[n_] := b[n, n, 0][[2]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, Nov 03 2022, after Alois P. Heinz *)
A237044
Number of overcompositions of n minus the number of partitions of n.
Original entry on oeis.org
0, 1, 2, 9, 21, 53, 133, 309, 706, 1572, 3534, 7752, 16991, 36807, 79385, 170528, 364563, 776739, 1649071, 3490698, 7366917, 15512544, 32583646, 68306009, 142902505, 298446956, 622232624, 1295316994, 2692580198, 5589582431, 11588900240, 23999045850
Offset: 0
A237045
Number of overcompositions of n minus the number of overpartitions of n.
Original entry on oeis.org
0, 0, 0, 4, 12, 36, 104, 260, 628, 1448, 3344, 7464, 16564, 36180, 78480, 169232, 362732, 774172, 1645508, 3485788, 7360208, 15503432, 32571360, 68289536, 142880552, 298417848, 622194236, 1295266596, 2692514348, 5589496748, 11588789220, 23998902548
Offset: 0
Illustration of a(4) = -6 with both overcompositions and overpartitions in colexicographic order.
--------------------------------------------------------
. Overcompositions of 4 Overpartitions of 4
--------------------------------------------------------
. _ _ _ _ _ _ _ _
1 |.| | | | 1', 1, 1, 1 |.| | | | 1', 1, 1, 1
2 |_| | | | 1, 1, 1, 1 |_| | | | 1, 1, 1, 1
3 | .|.| | 2', 1', 1 | .|.| | 2', 1', 1
4 | |.| | 2, 1', 1 | |.| | 2, 1', 1
5 | .| | | 2', 1, 1 | .| | | 2', 1, 1
6 |_ _| | | 2, 1, 1 |_ _| | | 2, 1, 1
7 *|.| .| | 1', 2', 1 | .|.| 3', 1
8 *| | .| | 1, 2', 1 | |.| 3, 1
9 *|.| | | 1', 2, 1 | .| | 3', 1
10 *|_| | | 1, 2, 1 |_ _ _| | 3, 1
11 | .|.| 3', 1' | .| | 2', 2
12 | |.| 3, 1' |_ _| | 2, 2
13 | .| | 3', 1 | .| 4'
14 |_ _ _| | 3, 1 |_ _ _ _| 4
15 *|.| | .| 1', 1, 2'
16 *| | | .| 1, 1, 2'
17 *|.| | | 1', 1, 2
18 *|_| | | 1, 1, 2
19 | .| | 2', 2
20 |_ _| | 2, 2
21 *|.| .| 1', 3'
22 *| | .| 1, 3'
23 *|.| | 1', 3
24 *|_| | 1, 3
25 | .| 4'
26 |_ _ _ _| 4
.
There are 26 overcompositions of 4 and there are 14 overpartitions of 4, so the difference is a(4) = 26 - 14 = 12.
On the other hand there are 12 overcompositions of 4 that contain at least two parts in increasing order, so a(4) = 12.
A237047
Number of compositions of n minus the number of overpartitions of n.
Original entry on oeis.org
0, -1, -2, -4, -6, -8, -8, 0, 28, 102, 280, 680, 1544, 3368, 7152, 14912, 30706, 62672, 127124, 256744, 516952, 1038672, 2083864, 4176576, 8365080, 16746150, 33513608, 67055456, 134148160, 268345208, 536754288, 1073591680, 2147291036, 4294721040, 8589620784
Offset: 0
Illustration of a(4) = -6.
--------------------------------------------------------
. Compositions of 4 Overpartitions of 4
--------------------------------------------------------
. _ _ _ _ _ _ _ _
1 |_| | | | 1, 1, 1, 1 |.| | | | 1', 1, 1, 1
2 |_ _| | | 2, 1, 1 |_| | | | 1, 1, 1, 1
3 |_| | | 1, 2, 1 | .|.| | 2', 1', 1
4 |_ _ _| | 3, 1 | |.| | 2, 1', 1
5 |_| | | 1, 1, 2 | .| | | 2', 1, 1
6 |_ _| | 2, 2 |_ _| | | 2, 1, 1
7 |_| | 1, 3 | .|.| 3', 1
8 |_ _ _ _| 4 | |.| 3, 1
9 | .| | 3', 1
10 |_ _ _| | 3, 1
11 | .| | 2', 2
12 |_ _| | 2, 2
13 | .| 4'
14 |_ _ _ _| 4
.
There are 8 compositions of 4 and there are 14 overpartitions of 4, so a(4) = 8 - 14 = -6.
A236626
Sum of all parts of all overcompositions of n.
Original entry on oeis.org
2, 8, 36, 104, 300, 864, 2268, 5824, 14418, 35760, 85888, 204816, 479804, 1113280, 2560560, 5836704, 13209612, 29690208, 66332572, 147350880, 325780056, 716862256, 1571067072, 3429697920, 7461222850, 16178111560, 34973640108, 75392349648
Offset: 1
For n = 3 the 12 overcompositions of 3 are [3], [3'], [1, 2], [1', 2], [1, 2'], [1', 2'], [2, 1], [2', 1], [2, 1'], [2', 1'], [1, 1, 1], [1', 1, 1], hence the sum of all parts is 3+3+1+2+1+2+1+2+1+2+2+1+2+1+2+1+2+1+1+1+1+1+1+1 = 3*12 = 36, so a(3) = 36.
A237272
Number of overcompositions of n that contain at least two parts in increasing order and that contain at least one overlined part.
Original entry on oeis.org
0, 0, 0, 3, 9, 27, 83, 211, 522, 1222, 2874, 6496, 14593, 32185, 70423, 153024, 330195, 708933, 1514821, 3224134, 6836547, 14455648, 30475210, 64096487, 134493519, 281642590, 588642240, 1228160742, 2558300338, 5321065857, 11051923912, 22925167566
Offset: 0
Showing 1-6 of 6 results.
Comments