A237040 Semiprimes of the form k^3 + 1.
9, 65, 217, 4097, 5833, 10649, 21953, 74089, 195113, 216001, 343001, 373249, 474553, 1000001, 1061209, 1191017, 1404929, 3241793, 3796417, 4251529, 6859001, 9261001, 12487169, 21952001, 29791001, 35937001, 43614209, 45882713, 55742969, 62099137, 89915393, 94818817, 117649001
Offset: 1
Keywords
Examples
9 = 3*3 = 2^3 + 1 is the first semiprime of the form n^3 + 1, so a(1) = 9.
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1400
- Eric Weisstein's World of Mathematics, Semiprime
- Wikipedia, Semiprime
- Wikipedia, Landau's problems
Crossrefs
Programs
-
Magma
IsSemiprime:= func
; [s: n in [1..500] | IsSemiprime(s) where s is n^3 + 1]; // Vincenzo Librandi, Jul 02 2017 -
Mathematica
L = Select[Range[500], PrimeQ[# + 1] && PrimeQ[#^2 - # + 1] &]; L^3 + 1 Select[Range[50]^3 + 1, PrimeOmega[#] == 2 &] (* Zak Seidov, Jun 26 2017 *)
-
PARI
lista(nn) = for (n=1, nn, if (bigomega(sp=n^3+1) == 2, print1(sp, ", "));); \\ Michel Marcus, Jun 27 2017
-
PARI
list(lim)=my(v=List(),n,t); forprime(p=3,sqrtnint(lim\1-1,3)+1, if(isprime(t=p^2-3*p+3), listput(v,t*p))); Vec(v) \\ Charles R Greathouse IV, Jul 02 2017
Comments