A237126 a(0)=0, a(1) = 1, a(2n) = nonludic(a(n)), a(2n+1) = ludic(a(n)+1), where ludic = A003309, nonludic = A192607.
0, 1, 4, 2, 9, 7, 6, 3, 16, 25, 14, 17, 12, 13, 8, 5, 26, 61, 36, 115, 22, 47, 27, 67, 20, 41, 21, 43, 15, 23, 10, 11, 38, 119, 81, 359, 51, 179, 146, 791, 33, 91, 64, 247, 39, 121, 88, 407, 31, 83, 57, 221, 32, 89, 59, 227, 24, 53, 34, 97, 18, 29, 19, 37, 54
Offset: 0
Keywords
Examples
a(2) = a(2*1) = nonludic(a(1)) = A192607(1) = 4. a(3) = a(2*1+1) = ludic(a(1)+1) = A003309(1+1) = A003309(2) = 2. a(4) = a(2*2) = nonludic(a(2)) = A192607(4) = 9. a(5) = a(2*2+1) = ludic(a(2)+1) = A003309(4+1) = A003309(5) = 7.
Links
Crossrefs
Programs
-
Haskell
import Data.List (transpose) a237126 n = a237126_list !! n a237126_list = 0 : es where es = 1 : concat (transpose [map a192607 es, map (a003309 . (+ 1)) es]) -- Reinhard Zumkeller, Feb 10 2014, Feb 06 2014
-
Mathematica
nmax = 64; T = Range[2, 20 nmax]; L = {1}; While[Length[T] > 0, With[{k = First[T]}, AppendTo[L, k]; T = Drop[T, {1, -1, k}]]]; nonL = Complement[Range[Last[L]], L]; a[n_] := a[n] = Which[ n < 2, n, EvenQ[n] && a[n/2] <= Length[nonL], nonL[[a[n/2]]], OddQ[n] && a[(n-1)/2]+1 <= Length[L], L[[a[(n-1)/2]+1]], True, Print[" error: n = ", n, " size of T should be increased"]]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Oct 10 2021, after Ray Chandler in A003309 *)
-
Scheme
;; With Antti Karttunen's IntSeq-library for memoizing definec-macro. (definec (A237126 n) (cond ((< n 2) n) ((even? n) (A192607 (A237126 (/ n 2)))) (else (A003309 (+ 1 (A237126 (/ (- n 1) 2))))))) ;; Antti Karttunen, Feb 07 2014
Comments