A237424 Numbers of the form (10^a + 10^b + 1)/3.
1, 4, 7, 34, 37, 67, 334, 337, 367, 667, 3334, 3337, 3367, 3667, 6667, 33334, 33337, 33367, 33667, 36667, 66667, 333334, 333337, 333367, 333667, 336667, 366667, 666667, 3333334, 3333337, 3333367, 3333667, 3336667
Offset: 1
Keywords
Links
- Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 (first 1035 terms from Robert G. Wilson v)
- Reinhard Zumkeller, First 10000 products of any two terms of A237424
Programs
-
Haskell
a237424 = flip div 3 . (+ 1) . a052216 -- Reinhard Zumkeller, Jan 28 2015
-
Magma
A052216:=[10^(n-1) + 10^(k-1): k in [1..n], n in [1..100]]; A237424:= func< n | (A052216[n]+1)/3 >; [A237424(n): n in [1..100]]; // G. C. Greubel, Feb 22 2024
-
Mathematica
Union@ Flatten@ Table[(10^a + 10^b + 1)/3, {a, 0, 8}, {b, a, 8}] (* Robert G. Wilson v, Jan 26 2015 *) (10^#[[1]]+10^#[[2]]+1)/3&/@Tuples[Range[0,8],2]//Union (* Harvey P. Dale, May 28 2019 *)
-
PARI
list(lim)=my(v=List(),a,t); while(1, for(b=0,a, t=(10^a+10^b+1)/3; if(t>lim, return(Set(v))); listput(v, t)); a++) \\ Charles R Greathouse IV, May 13 2015
-
Python
from math import isqrt def A237424(n): return (10**(a:=(k:=isqrt(m:=n<<1))+(m>k*(k+1))-1)+10**(n-1-(a*(a+1)>>1))+1)//3 # Chai Wah Wu, Apr 08 2025
-
SageMath
A052216=flatten([[10^(n-1) + 10^(k-1) for k in range(1,n+1)] for n in range(1,101)]) def A237424(n): return (A052216[n-1]+1)//3 [A237424(n) for n in range(1,101)] # G. C. Greubel, Feb 22 2024
Formula
a(n) = (A052216(n) + 1)/3. - Reinhard Zumkeller, Jan 28 2015
Extensions
Edited by David Applegate, Feb 07 2014
Comments