A237930 a(n) = 3^(n+1) + (3^n-1)/2.
3, 10, 31, 94, 283, 850, 2551, 7654, 22963, 68890, 206671, 620014, 1860043, 5580130, 16740391, 50221174, 150663523, 451990570, 1355971711, 4067915134, 12203745403, 36611236210, 109833708631, 329501125894, 988503377683, 2965510133050, 8896530399151
Offset: 0
Examples
Ternary....................Decimal 10...............................3 101.............................10 1011............................31 10111...........................94 101111.........................283 1011111........................850 10111111......................2551 101111111.....................7654, etc.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- Eric Weisstein's World of Mathematics, Graph Radius.
- Eric Weisstein's World of Mathematics, Sierpinski Carpet Graph.
- Index entries for linear recurrences with constant coefficients, signature (4,-3).
Crossrefs
Programs
-
Magma
[3^(n+1) + (3^n-1)/2: n in [0..40]]; // Vincenzo Librandi, Jan 09 2020
-
Mathematica
(* Start from Eric W. Weisstein, Mar 13 2018 *) Table[(7 3^n - 1)/2, {n, 0, 20}] (7 3^Range[0, 20] - 1)/2 LinearRecurrence[{4, -3}, {10, 31}, {0, 20}] CoefficientList[Series[(3 - 2 x)/((x - 1) (3 x - 1)), {x, 0, 20}], x] (* End *)
-
PARI
Vec((3 - 2*x) / ((1 - x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 27 2019
Formula
G.f.: (3-2*x)/((1-x)*(1-3*x)).
a(n) = 3*a(n-1) + 1 for n > 0, a(0)=3. (Note that if a(0) were 1 in this recurrence we would get A003462, if it were 2 we would get A060816. - N. J. A. Sloane, Dec 06 2019)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1, a(0)=3, a(1)=10.
a(n) = 2*a(n-1) + 3*a(n-2) + 2 for n > 1.
a(n) = A199109(n) - 1.
a(n) = (7*3^n - 1)/2. - Eric W. Weisstein, Mar 13 2018
From Klaus Purath, Apr 13 2020: (Start)
a(n) = 7*A003462(n) + 3.
a(n) = A116952(n) + 2. (End)
a(n) = A017209(7*(3^(n-2)-1)/2 + 3), n > 1. - Klaus Purath, Jul 03 2020
E.g.f.: exp(x)*(7*exp(2*x) - 1)/2. - Stefano Spezia, Aug 28 2023
Comments