cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A238086 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k is the increasing list of all primes p such that (p+k)^2+k is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

3, 7, 5, 11, 31, 13, 29, 47, 37, 19, 193, 41, 59, 43, 23, 139, 331, 113, 61, 79, 53, 107, 523, 409, 163, 67, 97, 73, 181, 293, 563, 457, 173, 71, 103, 83, 101, 277, 359, 769, 487, 199, 127, 241, 89, 17, 191, 541, 389, 853, 787, 211, 131, 271, 109
Offset: 1

Views

Author

Alois P. Heinz, Feb 17 2014

Keywords

Examples

			Column k=3 contains prime 47 because (47+3)^2+3 = 2503 is prime and (47+2)^2+2 = 2403 = 3^3*89 and (47+1)^2+1 = 2305 = 5*461 are composite.
Square array A(n,k) begins:
:   3,   7,  11,  29, 193,  139, 107,  181, ...
:   5,  31,  47,  41, 331,  523, 293,  277, ...
:  13,  37,  59, 113, 409,  563, 359,  541, ...
:  19,  43,  61, 163, 457,  769, 389,  937, ...
:  23,  79,  67, 173, 487,  853, 397, 1381, ...
:  53,  97,  71, 199, 787, 1019, 401, 1741, ...
:  73, 103, 127, 211, 829, 1489, 433, 2551, ...
:  83, 241, 131, 251, 991, 1553, 461, 2617, ...
		

Crossrefs

Main diagonal gives A238663.
Cf. A238048.

Programs

  • Maple
    A:= proc() local h, p, q; p, q:= proc() [] end, 2;
          proc(n, k)
            while nops(p(k))
    				
  • Mathematica
    nmax = 12;
    col[k_] := col[k] = Reap[For[cnt = 0; p = 2, cnt < nmax, p = NextPrime[p], If[PrimeQ[(p+k)^2+k] && AllTrue[Range[k-1], !PrimeQ[(p+#)^2+#]&], cnt++; Sow[p]]]][[2, 1]];
    A[n_, k_] := col[k][[n]];
    Table[A[n-k+1, k], {n, 1, nmax}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, May 03 2019 *)

A157468 Primes of the form sqrt(p-1)-1, where p is a prime.

Original entry on oeis.org

3, 5, 13, 19, 23, 53, 73, 83, 89, 109, 149, 179, 223, 229, 239, 263, 269, 283, 313, 349, 383, 419, 439, 443, 463, 569, 593, 643, 653, 673, 739, 859, 863, 919, 929, 1009, 1069, 1093, 1123, 1289, 1319, 1373, 1409, 1429, 1433, 1439, 1459
Offset: 1

Views

Author

Keywords

Examples

			3 is in the sequence because 3 = sqrt(17 - 1) - 1, where 17 is prime.
5 is in the sequence because 5 = sqrt(37 - 1) - 1, where 37 is prime.
		

Crossrefs

Column k=1 of A238048 and A238086.

Programs

  • Mathematica
    Select[Sqrt[#-1]-1&/@Prime[Range[200000]],PrimeQ]  (* Harvey P. Dale, May 19 2012 *)
Showing 1-2 of 2 results.