cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 22 results. Next

A157468 Primes of the form sqrt(p-1)-1, where p is a prime.

Original entry on oeis.org

3, 5, 13, 19, 23, 53, 73, 83, 89, 109, 149, 179, 223, 229, 239, 263, 269, 283, 313, 349, 383, 419, 439, 443, 463, 569, 593, 643, 653, 673, 739, 859, 863, 919, 929, 1009, 1069, 1093, 1123, 1289, 1319, 1373, 1409, 1429, 1433, 1439, 1459
Offset: 1

Views

Author

Keywords

Examples

			3 is in the sequence because 3 = sqrt(17 - 1) - 1, where 17 is prime.
5 is in the sequence because 5 = sqrt(37 - 1) - 1, where 37 is prime.
		

Crossrefs

Column k=1 of A238048 and A238086.

Programs

  • Mathematica
    Select[Sqrt[#-1]-1&/@Prime[Range[200000]],PrimeQ]  (* Harvey P. Dale, May 19 2012 *)

A238048 Square array A(n,k), n>=1, k>=1, read by antidiagonals, where column k is the increasing list of all primes p such that (p+k)^2+k is also prime.

Original entry on oeis.org

3, 7, 5, 5, 13, 13, 3, 7, 19, 19, 7, 11, 11, 31, 23, 5, 31, 13, 19, 37, 53, 3, 13, 43, 23, 47, 43, 73, 7, 5, 19, 67, 29, 59, 79, 83, 11, 13, 11, 29, 73, 31, 61, 97, 89, 3, 23, 43, 19, 59, 109, 41, 67, 103, 109, 13, 17, 29, 73, 23, 73, 157, 43, 71, 109, 149
Offset: 1

Views

Author

Alois P. Heinz, Feb 17 2014

Keywords

Comments

Prime 2 is not contained in this array.

Examples

			Column k=3 contains prime 47 because (47+3)^2+3 = 2503 is prime.
Square array A(n,k) begins:
   3,  7,  5,  3,   7,   5,  3,   7, ...
   5, 13,  7, 11,  31,  13,  5,  13, ...
  13, 19, 11, 13,  43,  19, 11,  43, ...
  19, 31, 19, 23,  67,  29, 19,  73, ...
  23, 37, 47, 29,  73,  59, 23,  79, ...
  53, 43, 59, 31, 109,  73, 29, 103, ...
  73, 79, 61, 41, 157,  83, 31, 109, ...
  83, 97, 67, 43, 163, 103, 41, 127, ...
		

Crossrefs

Column k=1 gives A157468.
Cf. A238086.

Programs

  • Maple
    A:= proc(n, k) option remember; local p;
          p:= `if`(n=1, 1, A(n-1, k));
          do p:= nextprime(p);
             if isprime((p+k)^2+k) then return p fi
          od
        end:
    seq(seq(A(n, 1+d-n), n=1..d), d=1..11);
  • Mathematica
    A[n_, k_] := A[n, k] = Module[{p}, For[p = If[n == 1, 1, A[n-1, k]] // NextPrime, True, p = NextPrime[p], If[PrimeQ[(p+k)^2+k], Return[p]]]]; Table[Table[A[n, 1+d-n], {n, 1, d}], {d, 1, 11}] // Flatten (* Jean-François Alcover, Jan 19 2015, after Alois P. Heinz *)

A238664 Primes p such that (p+2)^2+2 is prime but (p+1)^2+1 is not prime.

Original entry on oeis.org

7, 31, 37, 43, 79, 97, 103, 241, 271, 307, 367, 373, 421, 499, 547, 571, 601, 607, 709, 751, 883, 907, 967, 1033, 1129, 1213, 1231, 1237, 1327, 1423, 1597, 1609, 1621, 1747, 1801, 1867, 1933, 1951, 1993, 2017, 2131, 2137, 2203, 2221, 2281, 2287, 2647, 2659
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Column k=2 of A238086.

Programs

  • Mathematica
    Select[Prime[Range[400]],PrimeQ[(#+2)^2+2]&&CompositeQ[(#+1)^2+1]&] (* Harvey P. Dale, Jul 07 2019 *)

A238665 Primes p such that (p+3)^2+3 is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

11, 47, 59, 61, 67, 71, 127, 131, 137, 151, 157, 227, 337, 347, 353, 431, 467, 509, 521, 557, 577, 599, 613, 617, 619, 631, 683, 691, 701, 733, 743, 773, 857, 911, 983, 997, 1013, 1039, 1051, 1097, 1151, 1153, 1193, 1201, 1307, 1321, 1453, 1471, 1531, 1607
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Column k=3 of A238086.

A238666 Primes p such that (p+4)^2+4 is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

29, 41, 113, 163, 173, 199, 211, 251, 449, 479, 491, 503, 659, 661, 809, 823, 941, 1031, 1171, 1181, 1259, 1361, 1669, 1753, 1759, 1861, 1879, 1901, 1999, 2039, 2081, 2141, 2161, 2213, 2273, 2371, 2473, 2539, 2579, 2591, 2633, 2819, 2903, 2939, 2969, 3011
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Column k=4 of A238086.

A238667 Primes p such that (p+5)^2+5 is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

193, 331, 409, 457, 487, 787, 829, 991, 1087, 1117, 1249, 1297, 1303, 1543, 1627, 2251, 2311, 2377, 2521, 2767, 2857, 3061, 3067, 3739, 3769, 3907, 3931, 4027, 4057, 4099, 4159, 4567, 5023, 5281, 5407, 5581, 5749, 5827, 5839, 6073, 6379, 7039, 7879, 7963, 8017
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Column k=5 of A238086.

A238668 Primes p such that (p+6)^2+6 is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

139, 523, 563, 769, 853, 1019, 1489, 1553, 1559, 1583, 1693, 1723, 1949, 2239, 2339, 2393, 2423, 3469, 3779, 3863, 4073, 4133, 4273, 4283, 4483, 4663, 4969, 5233, 5503, 5683, 5869, 5953, 6269, 6299, 6473, 6569, 6959, 7229, 7309, 8233, 8513, 8573, 8839, 9749
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Column k=6 of A238086.

Programs

  • Mathematica
    pnpQ[n_]:=Module[{c=Table[(n+j)^2+j,{j,6}]},NoneTrue[Most[c], PrimeQ] &&PrimeQ[Last[c]]]; Select[Prime[Range[1500]],pnpQ] (* This program uses the function NoneTrue from Mathematica version 10 *) (* Harvey P. Dale, Jul 26 2014 *)

A238669 Primes p such that (p+7)^2+7 is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

107, 293, 359, 389, 397, 401, 433, 461, 647, 727, 797, 821, 977, 1063, 1163, 1229, 1301, 1367, 1427, 1451, 1499, 1571, 1657, 1721, 1987, 2099, 2111, 2179, 2207, 2351, 2447, 2707, 2797, 2801, 2861, 2957, 3037, 3187, 3221, 3457, 3463, 3527, 3541, 3557, 3607
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Column k=7 of A238086.

Programs

  • Mathematica
    Select[Prime[Range[600]],PrimeQ[(#+7)^2+7]&&NoneTrue[Table[(#+j)^2+j,{j,6}],PrimeQ]&] (* Harvey P. Dale, Apr 04 2024 *)

A238670 Primes p such that (p+8)^2+8 is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

181, 277, 541, 937, 1381, 1741, 2551, 2617, 2677, 3433, 3919, 4231, 4657, 4933, 5923, 6337, 6481, 6781, 7669, 7717, 7867, 8161, 8167, 8287, 8329, 8389, 8647, 8707, 9013, 9151, 9397, 9661, 9739, 9967, 10651, 11059, 11287, 11743, 11887, 12421, 12457, 12697
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Column k=8 of A238086.

Programs

  • Mathematica
    Select[Prime[Range[1600]],PrimeQ[Table[(#+n)^2+n,{n,8}]]=={False, False, False, False, False,False,False,True}&] (* Harvey P. Dale, Dec 17 2016 *)

A238671 Primes p such that (p+9)^2+9 is prime but (p+j)^2+j is not prime for all 0

Original entry on oeis.org

101, 191, 233, 311, 881, 1103, 1291, 1733, 1831, 1931, 2011, 2029, 2113, 2129, 2269, 2543, 2843, 3023, 3089, 3163, 3299, 3491, 3701, 3761, 3943, 4051, 4391, 4583, 4951, 5333, 5441, 5743, 5801, 6211, 6421, 6491, 7019, 7069, 7121, 7253, 7331, 8081, 8171, 8293
Offset: 1

Views

Author

Alois P. Heinz, Mar 02 2014

Keywords

Crossrefs

Column k=9 of A238086.

Programs

  • Mathematica
    Select[Prime[Range[1100]],PrimeQ[(#+9)^2+9]&&NoneTrue[Table[(#+j)^2+j,{j,8}],PrimeQ]&] (* Harvey P. Dale, Jul 02 2022 *)
Showing 1-10 of 22 results. Next