cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238113 Expansion of (3 - 5*x - 3*sqrt(x^2-6*x+1))/(4*x).

Original entry on oeis.org

1, 3, 9, 33, 135, 591, 2709, 12837, 62379, 309147, 1556577, 7940169, 40946607, 213118119, 1118080557, 5906404557, 31390735059, 167727039027, 900478280889, 4855086475761, 26277928981335, 142724482802943, 777647813128389, 4249385026394613, 23282201473312635, 127874913883456971, 703929221807756049
Offset: 0

Views

Author

N. J. A. Sloane, Mar 04 2014

Keywords

Comments

Number of associate averaging words of degree n.

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Rationals(), m); Coefficients(R!((3-5*x-3*Sqrt(x^2-6*x+1))/(4*x))); // Vincenzo Librandi, Jan 27 2020
  • Mathematica
    CoefficientList[Series[(3-5x-3*Sqrt[x^2-6x+1])/(4x),{x,0,30}],x] (* Harvey P. Dale, Mar 29 2016 *)
    Join[{1},Table[-(3/4) GegenbauerC[n+1,-(1/2),3],{n,1,30}]] (* Benedict W. J. Irwin, Sep 26 2016 *)
  • PARI
    x='x+O('x^50); Vec((3-5*x-3*sqrt(x^2-6*x+1))/(4*x)) \\ G. C. Greubel, Jun 01 2017
    

Formula

a(n) ~ 3*sqrt(3*sqrt(2)-4) * (3+2*sqrt(2))^(n+1) / (4*sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, Mar 05 2014
a(n) = -3/4*GegenbauerC(n+1,-1/2,3), n>0. - Benedict W. J. Irwin, Sep 26 2016
From Alexander Burstein, Apr 19 2018: (Start)
G.f.: A(x) = r+s-1 = (3*r-1)/2 = 3*s-2 = 1+3*x*r*s, where r=r(x) is g.f. of A006318 and s=s(x) is g.f. of A001003.
Series reversion of x*A(x) is x*A(-x). (End)
D-finite with recurrence: (n+1)*a(n) +3*(-2*n+1)*a(n-1) +(n-2)*a(n-2)=0. - R. J. Mathar, Jan 25 2020