cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A143917 G.f. A(x) satisfies A(x) = 1/(1-x) + x^2*A(x)*A'(x).

Original entry on oeis.org

1, 1, 2, 6, 25, 133, 851, 6313, 53061, 497493, 5144500, 58161126, 713789847, 9453038227, 134405493652, 2042529150110, 33045300698761, 567165849906233, 10294218618819268, 197022941365579804, 3966001076798967837, 83767346751954718361, 1852440991624711835677
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 133*x^5 + 851*x^6 +...
A'(x) = 1 + 4*x + 18*x^2 + 100*x^3 + 665*x^4 + 5106*x^5 +...
A(x)*A'(x) = 1 + 5*x + 24*x^2 + 132*x^3 + 850*x^4 + 6312*x^5 +...
		

Crossrefs

Cf. A143916 (variant), A238214.

Programs

  • Mathematica
    Clear[a]; a[0] = 1; a[n_]/; n>=1 := a[n] = 1 + Sum[(k - 1) a[k - 1] a[n - k], {k, n}]; Table[a[n], {n,0, 16}] (* David Callan, Jun 24 2013 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x+x*O(x^n))+x^2*A*deriv(A)); polcoeff(A, n)}
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j*v[j+1]*v[i-j])); v; \\ Seiichi Manyama, Jul 10 2025

Formula

a(n) ~ c * n!, where c = 1.81857005675331400362707139219522893237... (see A238214). - Vaclav Kotesovec, Feb 20 2014
a(n) = 1 + Sum_{k=0..n-1} k * a(k) * a(n-1-k). - Seiichi Manyama, Jul 10 2025
a(n) = 1 + (n-1)/2 * Sum_{k=0..n-1} a(k) * a(n-1-k). - Seiichi Manyama, Jul 15 2025

A143916 G.f. A(x) satisfies: A(x) = 1+x + x^2*A(x)*A'(x).

Original entry on oeis.org

1, 1, 1, 3, 12, 62, 385, 2781, 22848, 210176, 2139336, 23872450, 289825228, 3803859030, 53676793157, 810508456373, 13041332257860, 222776899815744, 4026846590787586, 76792054455516582, 1540845309830989064
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 3*x^3 + 12*x^4 + 62*x^5 + 385*x^6 +...
A'(x) = 1 + 2*x + 9*x^2 + 48*x^3 + 310*x^4 + 2310*x^5 + 19467*x^6 +...
A(x)*A'(x) = 1 + 3*x + 12*x^2 + 62*x^3 + 385*x^4 + 2781*x^5 +...
		

Crossrefs

Cf. A143917 (variant), A238214.

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[n_] := a[n] = Sum[k a[k] a[n-k-1], {k, 1, n-1}]; Table[a[n], {n, 0, 20}] (* Vladimir Reshetnikov, May 17 2016 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1+x+x^2*deriv(A^2/2)); polcoeff(A, n)}

Formula

a(n) ~ c * n!, where constant c = A238214 / exp(1) = 0.669014536209527303065690569951975534726... - Vaclav Kotesovec, Feb 21 2014
a(0) = 1, a(1) = 1, a(n) = Sum_{0 < k < n} k * a(k) * a(n-k-1). - Vladimir Reshetnikov, May 17 2016
Showing 1-2 of 2 results.