cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A143917 G.f. A(x) satisfies A(x) = 1/(1-x) + x^2*A(x)*A'(x).

Original entry on oeis.org

1, 1, 2, 6, 25, 133, 851, 6313, 53061, 497493, 5144500, 58161126, 713789847, 9453038227, 134405493652, 2042529150110, 33045300698761, 567165849906233, 10294218618819268, 197022941365579804, 3966001076798967837, 83767346751954718361, 1852440991624711835677
Offset: 0

Views

Author

Paul D. Hanna, Sep 05 2008

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 6*x^3 + 25*x^4 + 133*x^5 + 851*x^6 +...
A'(x) = 1 + 4*x + 18*x^2 + 100*x^3 + 665*x^4 + 5106*x^5 +...
A(x)*A'(x) = 1 + 5*x + 24*x^2 + 132*x^3 + 850*x^4 + 6312*x^5 +...
		

Crossrefs

Cf. A143916 (variant), A238214.

Programs

  • Mathematica
    Clear[a]; a[0] = 1; a[n_]/; n>=1 := a[n] = 1 + Sum[(k - 1) a[k - 1] a[n - k], {k, n}]; Table[a[n], {n,0, 16}] (* David Callan, Jun 24 2013 *)
  • PARI
    {a(n)=local(A=1+x+x*O(x^n)); for(i=1, n, A=1/(1-x+x*O(x^n))+x^2*A*deriv(A)); polcoeff(A, n)}
    
  • PARI
    a_vector(n) = my(v=vector(n+1)); for(i=0, n, v[i+1]=1+sum(j=0, i-1, j*v[j+1]*v[i-j])); v; \\ Seiichi Manyama, Jul 10 2025

Formula

a(n) ~ c * n!, where c = 1.81857005675331400362707139219522893237... (see A238214). - Vaclav Kotesovec, Feb 20 2014
a(n) = 1 + Sum_{k=0..n-1} k * a(k) * a(n-1-k). - Seiichi Manyama, Jul 10 2025
a(n) = 1 + (n-1)/2 * Sum_{k=0..n-1} a(k) * a(n-1-k). - Seiichi Manyama, Jul 15 2025

A185183 G.f. A(x) satisfies A(x) = 1+x + x^2*[d/dx A(x)^2].

Original entry on oeis.org

1, 1, 2, 10, 72, 672, 7640, 102072, 1564864, 27064448, 521248320, 11064781760, 256702399360, 6462978471168, 175520877380992, 5115062135795584, 159227683153536000, 5273353734210310144, 185143079148664099840, 6869062513111759635456
Offset: 0

Views

Author

Paul D. Hanna, Mar 12 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + 2*x^2 + 10*x^3 + 72*x^4 + 672*x^5 + 7640*x^6 +...
Related series:
A(x)^2 = 1 + 2*x + 5*x^2 + 24*x^3 + 168*x^4 + 1528*x^5 + 17012*x^6 +...
d/dx A(x)^2 = 2 + 10*x + 72*x^2 + 672*x^3 + 7640*x^4 + 102072*x^5 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x+x^2*deriv(A^2+x*O(x^n))); polcoeff(A, n)}
    for(n=0,30,print1(a(n),", "))

Formula

G.f. A(x) satisfies: A(x) = 1+x + 2*x^2*A(x)*A'(x).
a(n) ~ c * n! * 2^n / sqrt(n), where c = 0.493602095524198015213766719826126125048... - Vaclav Kotesovec, Feb 21 2014
a(0) = a(1) = 1; a(n) = (n-1) * Sum_{k=0..n-1} a(k) * a(n-k-1). - Ilya Gutkovskiy, Jul 05 2020
a(0) = a(1) = 1; a(n) = 2 * Sum_{k=0..n-1} k * a(k) * a(n-1-k). - Seiichi Manyama, Jul 16 2025

A238214 Decimal expansion of a constant related to A143917.

Original entry on oeis.org

1, 8, 1, 8, 5, 7, 0, 0, 5, 6, 7, 5, 3, 3, 1, 4, 0, 0, 3, 6, 2, 7, 0, 7, 1, 3, 9, 2, 1, 9, 5, 2, 2, 8, 9, 3, 2, 3, 6, 9, 6, 8, 0, 2, 7, 1, 5, 5, 5, 5, 9, 7, 7, 6, 4, 9, 9, 7, 3, 7, 1, 0, 8, 1, 6, 6, 2, 4, 6, 1, 7, 8, 1, 3, 2, 5, 8, 9, 2, 5, 2, 1, 6, 9, 1, 3, 5, 1, 8, 6, 9, 8, 0, 4, 8, 4, 3, 2, 3, 8, 9, 5, 4, 0, 0, 1
Offset: 1

Views

Author

Vaclav Kotesovec, Feb 21 2014

Keywords

Examples

			1.81857005675331400362707139219522893237...
		

Crossrefs

Formula

Equals lim n->infinity A143917(n)/n!.

A217989 G.f. satisfies: A(x) = 1+x + x^2*A'(x)*A(x)^2.

Original entry on oeis.org

1, 1, 1, 4, 19, 116, 835, 6890, 63826, 654552, 7354893, 89830770, 1184915556, 16788863356, 254342837905, 4103256660048, 70241858430220, 1271839899568064, 24287699718766932, 487891841580468294, 10285169201486942788, 227042177973572054900
Offset: 0

Views

Author

Paul D. Hanna, Oct 23 2012

Keywords

Examples

			G.f.: A(x) = 1 + x + x^2 + 4*x^3 + 19*x^4 + 116*x^5 + 835*x^6 + 6890*x^7 +...
Related expansions:
A'(x) = 1 + 2*x + 12*x^2 + 76*x^3 + 580*x^4 + 5010*x^5 + 48230*x^6 +...
A(x)^2 = 1 + 2*x + 3*x^2 + 10*x^3 + 47*x^4 + 278*x^5 + 1956*x^6 + 15834*x^7 +...
		

Crossrefs

Programs

  • PARI
    {a(n)=local(A=1+x); for(i=1, n, A=1+x+x^2*A'*(A^2+x*O(x^n))); polcoeff(A, n)}
    for(n=0, 30, print1(a(n), ", "))

Formula

a(n) ~ c * n! * n, where c = 0.21362630601338471861707529847387... - Vaclav Kotesovec, Feb 22 2014
Showing 1-4 of 4 results.