A238237 Numbers which when chopped into two parts with equal length, added and squared result in the same number.
81, 2025, 3025, 9801, 494209, 998001, 24502500, 25502500, 52881984, 60481729, 99980001, 6049417284, 6832014336, 9048004641, 9999800001, 101558217124, 108878221089, 123448227904, 127194229449, 152344237969, 213018248521, 217930248900, 249500250000, 250500250000
Offset: 1
Examples
2025 = (20 + 25)^2, so 2025 is in the sequence. 3025 = (30 + 25)^2, so 3025 is in the sequence. 9801 = (98 + 01)^2, so 9801 is in the sequence.
Links
- Rémy Sigrist, Table of n, a(n) for n = 1..25000
Crossrefs
Programs
-
Mathematica
Select[Range[600000]^2, EvenQ[len=IntegerLength[#]] && # == (Mod[#,10^(len/2)] + Floor[#/10^(len/2)])^2 &] (* Stefano Spezia, Jan 01 2025 *)
-
PARI
forstep(m=1, 7, 2, p=10^((m+1)/2); for(n=10^m, 10^(m+1)-1, d=lift(Mod(n, p)); if(((n-d)/p+d)^2==n, print1(n, ", "))));
Formula
a(n) = A290449(n)^2. - Bernard Schott, Jan 20 2022
Extensions
a(12)-a(24) from Donovan Johnson, Feb 22 2014
Comments