cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A290449 Square roots of terms in A238237.

Original entry on oeis.org

9, 45, 55, 99, 703, 999, 4950, 5050, 7272, 7777, 9999, 77778, 82656, 95121, 99999, 318682, 329967, 351352, 356643, 390313, 461539, 466830, 499500, 500500, 533170, 538461, 609687, 643357, 648648, 670033, 681318, 791505, 812890, 818181, 851851, 857143, 961038
Offset: 1

Views

Author

N. J. A. Sloane, Aug 06 2017, following a suggestion from Max Alekseyev

Keywords

Comments

Yet another variant of the Kaprekar numbers A006886.

Crossrefs

Programs

  • Mathematica
    Sqrt[Select[Range[600000]^2, EvenQ[len=IntegerLength[#]] && # == (Mod[#, 10^(len/2)] + Floor[#/10^(len/2)])^2 &]] (* Stefano Spezia, Jan 01 2025 *)

A059988 a(n) = (10^n - 1)^2.

Original entry on oeis.org

0, 81, 9801, 998001, 99980001, 9999800001, 999998000001, 99999980000001, 9999999800000001, 999999998000000001, 99999999980000000001, 9999999999800000000001, 999999999998000000000001, 99999999999980000000000001, 9999999999999800000000000001, 999999999999998000000000000001
Offset: 0

Views

Author

Henry Bottomley, Mar 07 2001

Keywords

Comments

From James D. Klein, Feb 05 2012: (Start)
The periods of the reciprocals of a(n) are the consecutive integers from 0 to 10^n-1, omitting the one integer 10^n-2, right-justified in field widths of size n.
E.g.:
1/81 = 0.012345679...
1/9801 = 0.000102030405060708091011...9799000102...
1/998001 = 0.000001002003004005...997999000001002... (End)
Sum of first 10^n - 1 odd numbers. - Arkadiusz Wesolowski, Jun 12 2013

Examples

			From _Reinhard Zumkeller_, May 31 2010: (Start)
n=1: ..................... 81 = 9^2;
n=2: ................... 9801 = 99^2;
n=3: ................. 998001 = 999^2;
n=4: ............... 99980001 = 9999^2;
n=5: ............. 9999800001 = 99999^2;
n=6: ........... 999998000001 = 999999^2;
n=7: ......... 99999980000001 = 9999999^2;
n=8: ....... 9999999800000001 = 99999999^2;
n=9: ..... 999999998000000001 = 999999999^2. (End)
		

References

  • Albert H. Beiler, Recreations in the theory of numbers, New York, Dover, (2nd ed.) 1966. See Table 32 at p. 61.
  • Walther Lietzmann, Lustiges und Merkwuerdiges von Zahlen und Formen, (F. Hirt, Breslau 1921-43), p. 149.
  • Alfred S. Posamentier, Math Charmers, Tantalizing Tidbits for the Mind, Prometheus Books, NY, 2003, page 34.

Crossrefs

Programs

Formula

a(n) = 81*A002477(n) = A002283(n)^2 = (9*A002275(n))^2.
a(n) = {999... (n times)}^2 = {999... (n times), 000... (n times)} - {999... (n times)}. For example, 999^2 = 999000 - 999 = 998001. - Kyle D. Balliet, Mar 07 2009
a(n) = (A002283(n-1)*10 + 8) * 10^(n-1) + 1, for n>0. - Reinhard Zumkeller, May 31 2010
From Ilya Gutkovskiy, Apr 19 2016: (Start)
O.g.f.: 81*x*(1 + 10*x)/((1 - x)*(1 - 10*x)*(1 - 100*x)).
E.g.f.: (1 - 2*exp(9*x) + exp(99*x))*exp(x). (End)
Sum_{n>=1} 1/a(n) = (log(10)*(QPolyGamma(0, 1, 1/10) - log(10/9)) + QPolyGamma(1, 1, 1/10))/log(10)^2 = 0.012448721523422795191... . - Stefano Spezia, Jul 31 2024
a(n) = 111*a(n-1) - 1110*a(n-2) + 1000*a(n-3). - Elmo R. Oliveira, Aug 02 2025

A102766 Numbers n that can be chopped into two parts, which when added and squared result in n.

Original entry on oeis.org

1, 81, 100, 2025, 3025, 9801, 10000, 88209, 494209, 998001, 1000000, 4941729, 7441984, 23804641, 24502500, 25502500, 28005264, 52881984, 60481729, 99980001, 100000000, 300814336, 493817284, 1518037444, 6049417284, 6832014336, 9048004641, 9999800001, 10000000000
Offset: 1

Views

Author

Bodo Zinser, Feb 10 2005

Keywords

Examples

			a(7) = 88209 is a term as (88+209)^2 = 297^2 = 88209.
		

Crossrefs

Supersequence of A238237.

Programs

  • Python
    from math import isqrt
    from itertools import count, islice
    def ok(n):
        if n == 1: return True
        r = isqrt(n)
        if r**2 != n: return False
        s = str(n)
        return any(int(s[:i])+int(s[i:])== r for i in range(1, len(s)))
    def agen(): yield from (k**2 for k in count(1) if ok(k**2))
    print(list(islice(agen(), 29))) # Michael S. Branicky, Dec 29 2024

Formula

a(n) = A248353(n)^2.

Extensions

a(1)=1 prepended by Max Alekseyev, Aug 04 2017
a(27) and beyond from Michael S. Branicky, Dec 29 2024

A038544 a(n) = Sum_{i=0..10^n} i^3.

Original entry on oeis.org

1, 3025, 25502500, 250500250000, 2500500025000000, 25000500002500000000, 250000500000250000000000, 2500000500000025000000000000, 25000000500000002500000000000000, 250000000500000000250000000000000000, 2500000000500000000025000000000000000000
Offset: 0

Views

Author

Keywords

Comments

These terms k = x.y satisfy Diophantine equation x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0. So, this is a subsequence of A350870 and A238237. - Bernard Schott, Jan 20 2022

Examples

			a(1) = Sum_{i=0..10} i^3 = (Sum_{i=0..10} i)^2 = 3025.
		

Crossrefs

Programs

  • PARI
    sumcu(n) = for(x=0,n,y=10^x;z=y^2*(y+1)^2/4;(print1(z","))) \\ Cino Hilliard, Jun 18 2007

Formula

a(n) = (10^n+1)^2 * 10^(2*n) / 4.
From Bernard Schott, Jan 20 2022: (Start)
a(n) = A037156(n)^2.
a(n) = A350869(n) + 10^(3*n). (End)

Extensions

Edited by N. J. A. Sloane, Jul 02 2008 at the suggestion of R. J. Mathar

A350870 Numbers k = x.y such that x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.

Original entry on oeis.org

81, 2025, 3025, 494209, 24502500, 25502500, 52881984, 60481729, 6049417284, 6832014336, 101558217124, 108878221089, 123448227904, 127194229449, 152344237969, 213018248521, 217930248900, 249500250000, 250500250000, 284270248900, 289940248521, 371718237969, 413908229449, 420744227904
Offset: 1

Views

Author

Bernard Schott, Jan 20 2022

Keywords

Comments

Problem proposed on French site Diophante (see link).
We have to solve Diophantine equation (x+y)^2 = x*10^m + y where m = length(x) = length(y).
Squares of a variant of Kaprekar numbers (A045913).
Number of solutions with 2*m digits for m >= 1: 1, 2, 1, 4, 2, 21, ...
Compare with A347541 where x*y divides x.y, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.

Examples

			81 = (8+1)^2, hence 81 is a term.
3025 = (30+25)^2, hence 3025 is another term.
		

Crossrefs

Equals A238237 \ A350918.
Subsequence of A102766.
Subsequences: A038544, A350869.

Programs

  • PARI
    upto(n) = {i = 4; i2 = i^2; res = List(); while(i2 <= n, i++; i2 = i^2; if(#digits(i2) % 2 == 1, i = sqrtint(10^(#digits(i2))) + 1; i2 = i^2; ); if(is(i2), listput(res, i2) ); ); res }
    is(n) = { my(d = digits(n), d1, d2, frd2); if(#d % 2 == 1, return(0)); d1 = vector(#d \ 2, i, d[i]); d2 = vector(#d \ 2, i, d[i + #d \ 2]); frd2 = fromdigits(d2); 10^(#d \ 2 - 1) <= frd2 && (fromdigits(d1) + frd2)^2 == n } \\ David A. Corneth, Jan 21 2022

Formula

a(n) = A045913(n+1)^2.

A350869 a(n) = Sum_{i=0..10^n-1} i^3.

Original entry on oeis.org

0, 2025, 24502500, 249500250000, 2499500025000000, 24999500002500000000, 249999500000250000000000, 2499999500000025000000000000, 24999999500000002500000000000000, 249999999500000000250000000000000000, 2499999999500000000025000000000000000000
Offset: 0

Views

Author

Bernard Schott, Jan 20 2022

Keywords

Comments

These terms k = x.y satisfy equation x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0. So, this is a subsequence of A350870 and A238237.

Examples

			a(1) = Sum_{i=0..9} i^3 = (Sum_{i=0..9} i)^2 = 2025.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (10^n*(10^n - 1)/2)^2; Array[a, 11, 0] (* Amiram Eldar, Jan 20 2022 *)
  • PARI
    a(n) = my(x=10^n-1); (x*(x+1)/2)^2; \\ Michel Marcus, Jan 22 2022

Formula

a(n) = 10^(2n) * (10^n-1)^2 / 4 = A037182(n)^2.
a(n) = A000217(10^n-1)^2.
a(n) = A038544(n) - 10^(3*n).

A350918 Numbers k = x.y which when split into two parts x and y of equal length, added and squared result in the same number k, '.' means concatenation, and the second part y starts with 0.

Original entry on oeis.org

9801, 998001, 99980001, 9048004641, 9999800001, 923594037444, 989444005264, 999998000001, 7901234409876544, 8434234407495744, 8934133805179209, 9999999800000001, 999999998000000001, 79012345680987654321, 82644628100826446281, 83407877440792003584, 87138706300620940900
Offset: 1

Views

Author

Bernard Schott, Jan 22 2022

Keywords

Comments

Problem proposed on French site Diophante (see link).

Examples

			(998+001)^2 = 999^2 = 998001, as x = 998 and y = 001 starts with 0, 998001 is a term.
(30+25)^2 = 55^2 = 3025, here x = 30 but y = 25 does not start with 0, hence 3025 is not a term.
		

Crossrefs

Equals A238237 \ A350870.
A059988 \ {0, 81} is a subsequence.
Showing 1-7 of 7 results.