cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A037156 a(n) = 10^n*(10^n+1)/2.

Original entry on oeis.org

1, 55, 5050, 500500, 50005000, 5000050000, 500000500000, 50000005000000, 5000000050000000, 500000000500000000, 50000000005000000000, 5000000000050000000000, 500000000000500000000000, 50000000000005000000000000, 5000000000000050000000000000
Offset: 0

Views

Author

Keywords

Comments

Sum of first 10^n positive integers. - Omar E. Pol, May 03 2015

Examples

			From _Omar E. Pol_, May 03 2015: (Start)
For n = 0; a(0) = 1                       =    1 * 1   = 1
For n = 1; a(1) = 1 + 2 + ...... + 9 + 10 =   11 * 5   = 55
For n = 2; a(2) = 1 + 2 + .... + 99 + 100 =  101 * 50  = 5050
For n = 3; a(3) = 1 + 2 + .. + 999 + 1000 = 1001 * 500 = 500500
...
(End)
		

References

  • C. Pickover, Wonders of Numbers, Oxford University Press, NY, 2001, p. 328.

Crossrefs

A subsequence of the triangular numbers A000217.
Cf. A038544.

Programs

  • Mathematica
    LinearRecurrence[{110,-1000},{1,55},20] (* Harvey P. Dale, Oct 11 2023 *)

Formula

a(n) = A000533(n) * A093143(n). - Omar E. Pol, May 03 2015
From Chai Wah Wu, May 28 2016: (Start)
a(n) = 110*a(n-1) - 1000*a(n-2).
G.f.: (1 - 55*x)/((10*x - 1)*(100*x - 1)).
(End)
a(n) = sqrt(A038544(n)). - Bernard Schott, Jan 20 2022

Extensions

Corrected by T. D. Noe, Nov 07 2006

A238237 Numbers which when chopped into two parts with equal length, added and squared result in the same number.

Original entry on oeis.org

81, 2025, 3025, 9801, 494209, 998001, 24502500, 25502500, 52881984, 60481729, 99980001, 6049417284, 6832014336, 9048004641, 9999800001, 101558217124, 108878221089, 123448227904, 127194229449, 152344237969, 213018248521, 217930248900, 249500250000, 250500250000
Offset: 1

Views

Author

Arkadiusz Wesolowski, Feb 20 2014

Keywords

Comments

Yet another variant of the Kaprekar numbers A006886. - N. J. A. Sloane, Aug 06 2017
From Bernard Schott, Jan 21 2022: (Start)
Three subsequences:
-> {(10^m-1)^2, m >= 1} = A059988 \ {0}; see example 9801.
-> {(10^m-1)^2 * 10^(2*m) / 4, m >= 1} = A350869 \ {0}; see example 2025.
-> {(10^m+1)^2 * 10^(2*m) / 4, m >= 1} = A038544 \ {1}, see example 3025. (End)

Examples

			2025 = (20 + 25)^2, so 2025 is in the sequence.
3025 = (30 + 25)^2, so 3025 is in the sequence.
9801 = (98 + 01)^2, so 9801 is in the sequence.
		

Crossrefs

Subsequence of A102766.
Subsequence: A350870.
For square roots see A290449.

Programs

  • Mathematica
    Select[Range[600000]^2, EvenQ[len=IntegerLength[#]] && # == (Mod[#,10^(len/2)] + Floor[#/10^(len/2)])^2 &] (* Stefano Spezia, Jan 01 2025 *)
  • PARI
    forstep(m=1, 7, 2, p=10^((m+1)/2); for(n=10^m, 10^(m+1)-1, d=lift(Mod(n, p)); if(((n-d)/p+d)^2==n, print1(n, ", "))));

Formula

a(n) = A290449(n)^2. - Bernard Schott, Jan 20 2022

Extensions

a(12)-a(24) from Donovan Johnson, Feb 22 2014

A350870 Numbers k = x.y such that x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.

Original entry on oeis.org

81, 2025, 3025, 494209, 24502500, 25502500, 52881984, 60481729, 6049417284, 6832014336, 101558217124, 108878221089, 123448227904, 127194229449, 152344237969, 213018248521, 217930248900, 249500250000, 250500250000, 284270248900, 289940248521, 371718237969, 413908229449, 420744227904
Offset: 1

Views

Author

Bernard Schott, Jan 20 2022

Keywords

Comments

Problem proposed on French site Diophante (see link).
We have to solve Diophantine equation (x+y)^2 = x*10^m + y where m = length(x) = length(y).
Squares of a variant of Kaprekar numbers (A045913).
Number of solutions with 2*m digits for m >= 1: 1, 2, 1, 4, 2, 21, ...
Compare with A347541 where x*y divides x.y, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0.

Examples

			81 = (8+1)^2, hence 81 is a term.
3025 = (30+25)^2, hence 3025 is another term.
		

Crossrefs

Equals A238237 \ A350918.
Subsequence of A102766.
Subsequences: A038544, A350869.

Programs

  • PARI
    upto(n) = {i = 4; i2 = i^2; res = List(); while(i2 <= n, i++; i2 = i^2; if(#digits(i2) % 2 == 1, i = sqrtint(10^(#digits(i2))) + 1; i2 = i^2; ); if(is(i2), listput(res, i2) ); ); res }
    is(n) = { my(d = digits(n), d1, d2, frd2); if(#d % 2 == 1, return(0)); d1 = vector(#d \ 2, i, d[i]); d2 = vector(#d \ 2, i, d[i + #d \ 2]); frd2 = fromdigits(d2); 10^(#d \ 2 - 1) <= frd2 && (fromdigits(d1) + frd2)^2 == n } \\ David A. Corneth, Jan 21 2022

Formula

a(n) = A045913(n+1)^2.

A350869 a(n) = Sum_{i=0..10^n-1} i^3.

Original entry on oeis.org

0, 2025, 24502500, 249500250000, 2499500025000000, 24999500002500000000, 249999500000250000000000, 2499999500000025000000000000, 24999999500000002500000000000000, 249999999500000000250000000000000000, 2499999999500000000025000000000000000000
Offset: 0

Views

Author

Bernard Schott, Jan 20 2022

Keywords

Comments

These terms k = x.y satisfy equation x.y = (x+y)^2, when x and y have the same number of digits, "." means concatenation, and y may not begin with 0. So, this is a subsequence of A350870 and A238237.

Examples

			a(1) = Sum_{i=0..9} i^3 = (Sum_{i=0..9} i)^2 = 2025.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := (10^n*(10^n - 1)/2)^2; Array[a, 11, 0] (* Amiram Eldar, Jan 20 2022 *)
  • PARI
    a(n) = my(x=10^n-1); (x*(x+1)/2)^2; \\ Michel Marcus, Jan 22 2022

Formula

a(n) = 10^(2n) * (10^n-1)^2 / 4 = A037182(n)^2.
a(n) = A000217(10^n-1)^2.
a(n) = A038544(n) - 10^(3*n).
Showing 1-4 of 4 results.