cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238328 Sum of all the parts in the partitions of 4n into 4 parts.

Original entry on oeis.org

4, 40, 180, 544, 1280, 2592, 4732, 7968, 12636, 19120, 27808, 39168, 53716, 71960, 94500, 121984, 155040, 194400, 240844, 295120, 358092, 430672, 513728, 608256, 715300, 835848, 971028, 1122016, 1289920, 1476000, 1681564, 1907840, 2156220, 2428144, 2724960
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Feb 24 2014

Keywords

Examples

			                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     4               40            180             544        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[4, 40, 180, 544, 1280, 2592, 4732, 7968, 12636]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-6*Self(n-4)+6*Self(n-5)-3*Self(n-6)+3*Self(n-7)-3*Self(n-8)+Self(n-9): n in [1..45]]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    CoefficientList[Series[4*(4*x^6 + 15*x^5 + 23*x^4 + 28*x^3 + 18*x^2 + 7*x + 1)/((1 - x)^5*(x^2 + x + 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 27 2014 *)
    LinearRecurrence[{3, -3, 3, -6, 6, -3, 3, -3, 1}, {4, 40, 180, 544, 1280, 2592, 4732, 7968, 12636}, 50] (* Vincenzo Librandi, Aug 29 2015 *)
  • PARI
    Vec(-4*x*(4*x^6+15*x^5+23*x^4+28*x^3+18*x^2+7*x+1)/((x-1)^5*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Mar 24 2014
    

Formula

Recurrence: a(1) = 4, with a(n) = (n/(n-1))*a(n-1) + 4n*Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * floor((sign(floor((4n-2-i)/2)-i)+2)/2), n > 1.
G.f.: 4*x*(4*x^6+15*x^5+23*x^4+28*x^3+18*x^2+7*x+1) / ((1-x)^5*(x^2+x+1)^2). - Colin Barker, Mar 10 2014
a(n) = 16/9*n^4 + 4/3*n^3 + O(n). - Ralf Stephan, May 29 2014
a(n) = 4n*(A238702(n) - A238702(n-1)), n > 1. - Wesley Ivan Hurt, May 29 2014
a(n) = 4n * A238340(n). - Wesley Ivan Hurt, May 29 2014
E.g.f.: 4*exp(-x/2)*(3*exp(3*x/2)*(8 + x*(37 + x*(27 + 4*x))) + 3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Feb 09 2023
a(n) = 3*a(n-1) - 3*a(n-2) + 3*a(n-3) - 6*a(n-4) + 6*a(n-5) - 3*a(n-6) + 3*a(n-7) - 3*a(n-8) + a(n-9). - Wesley Ivan Hurt, Jun 19 2024