cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A238340 Number of partitions of 4n into 4 parts.

Original entry on oeis.org

1, 5, 15, 34, 64, 108, 169, 249, 351, 478, 632, 816, 1033, 1285, 1575, 1906, 2280, 2700, 3169, 3689, 4263, 4894, 5584, 6336, 7153, 8037, 8991, 10018, 11120, 12300, 13561, 14905, 16335, 17854, 19464, 21168, 22969, 24869, 26871, 28978, 31192, 33516, 35953
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Feb 24 2014

Keywords

Comments

First differences of A238702. - Wesley Ivan Hurt, May 27 2014
Number of partitions of 4*(n-1) into at most 4 parts. - Colin Barker, Apr 01 2015

Examples

			Count the partitions of 4*n into 4 parts:
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               5              15              34        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[1,5,15,34,64,108]; [n le 6 select I[n] else 3*Self(n-1)-3*Self(n-2)+2*Self(n-3)-3*Self(n-4)+3*Self(n-5)-Self(n-6): n in [1..45]]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    CoefficientList[Series[(x + 1)*(2*x^2 + x + 1)/((x - 1)^4*(x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 27 2014 *)
    Table[2*n/9 + n^2/3 + 4*n^3/9 - Floor[n/3]/3 - Floor[(n+1)/3]/3, {n, 1, 50}] (* Vaclav Kotesovec, Jul 04 2014 *)
    LinearRecurrence[{3, -3, 2, -3, 3, -1}, {1, 5, 15, 34, 64, 108}, 50] (* Vincenzo Librandi, Aug 29 2015 *)
  • PARI
    Vec(x*(x+1)*(2*x^2+x+1)/((x-1)^4*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Mar 24 2014
    
  • PARI
    a(n)=n^2*(4*n+3)\/9 \\ Charles R Greathouse IV, Jun 29 2020
    

Formula

a(n) = A238328(n) / 4n.
G.f.: x*(x+1)*(2*x^2+x+1) / ((x-1)^4*(x^2+x+1)). - Colin Barker, Mar 10 2014
a(n) = 4/9*n^3 + 1/3*n^2 + O(1). - Ralf Stephan, May 29 2014
a(n) = A238702(n) - A238702(n-1), n>1. - Wesley Ivan Hurt, May 29 2014
Recurrence: Let b(1) = 4, with b(n) = (n/(n-1)) * b(n-1) + 4n * Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * (floor((sign((floor((4n-2-i)/2)-i)) +2)/2)), for n>1. Then a(n) = b(n)/(4n). - Wesley Ivan Hurt, Jun 27 2014
Recurrence: (4*n^3 - 21*n^2 + 44*n - 33)*a(n) = 3*(4*n^2 - 10*n + 9)*a(n-1) + 3*(4*n^2 - 10*n + 9)*a(n-2) + (4*n^3 - 9*n^2 + 14*n - 6)*a(n-3). - Vaclav Kotesovec, Jul 04 2014
a(n) = round(((4n)^3 + 3*(4n)^2)/144). - Giacomo Guglieri, Jun 28 2020
E.g.f.: exp(-x/2)*(3*exp(3*x/2)*(1 + x*(7 + x*(15 + 4*x))) - 3*cos(sqrt(3)*x/2) + sqrt(3)*sin(sqrt(3)*x/2))/27. - Stefano Spezia, Feb 09 2023
a(n) = 3*a(n-1) - 3*a(n-2) + 2*a(n-3) - 3*a(n-4) + 3*a(n-5) - a(n-6). - Wesley Ivan Hurt, Jun 19 2024

A238702 Sum of the smallest parts of the partitions of 4n into 4 parts.

Original entry on oeis.org

1, 6, 21, 55, 119, 227, 396, 645, 996, 1474, 2106, 2922, 3955, 5240, 6815, 8721, 11001, 13701, 16870, 20559, 24822, 29716, 35300, 41636, 48789, 56826, 65817, 75835, 86955, 99255, 112816, 127721, 144056, 161910, 181374, 202542, 225511, 250380, 277251, 306229
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Mar 03 2014

Keywords

Comments

Partial sums of A238340. - Wesley Ivan Hurt, May 27 2014

Examples

			Add the numbers in the last column for a(n):
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               6              21              55        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    CoefficientList[Series[(x + 1)*(2*x^2 + x + 1)/((1 - x)^5*(x^2 + x + 1)), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 27 2014 *)
    LinearRecurrence[{4, -6, 5, -5, 6, -4, 1}, {1, 6, 21, 55, 119, 227, 396}, 50] (* Vincenzo Librandi, Aug 29 2015 *)
  • PARI
    Vec(-x*(x+1)*(2*x^2+x+1)/((x-1)^5*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Mar 23 2014

Formula

G.f.: -x*(x+1)*(2*x^2+x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Mar 10 2014
a(n) = (1/9)*n^4 + (1/3)*n^3 + (5/18)*n^2 + (1/6)*n + O(1). - Ralf Stephan, May 29 2014
a(n) = Sum_{i=1..n} A238340(i). - Wesley Ivan Hurt, May 29 2014
a(n) = (1/4) * Sum_{i=1..n} A238328(i)/i. - Wesley Ivan Hurt, May 29 2014
Recurrence: Let b(1) = 4, with b(n) = (n/(n-1))*b(n-1) + 4n*Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * (floor((sign((floor((4n-2-i)/2)-i))+2)/2)). Then a(1) = 1, with a(n) = b(n)/(4n) + a(n-1), for n>1. - Wesley Ivan Hurt, Jun 27 2014
E.g.f.: (exp(x)*(4 + 3*x*(16 + x*(37 + 2*x*(9 + x)))) - 4*exp(-x/2)*cos(sqrt(3)*x/2))/54. - Stefano Spezia, Feb 09 2023
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 5*a(n-4) + 6*a(n-5) - 4*a(n-6) + a(n-7). - Wesley Ivan Hurt, Jun 19 2024

A238705 Number of partitions of 4n into 4 parts with smallest part = 1.

Original entry on oeis.org

1, 4, 10, 19, 30, 44, 61, 80, 102, 127, 154, 184, 217, 252, 290, 331, 374, 420, 469, 520, 574, 631, 690, 752, 817, 884, 954, 1027, 1102, 1180, 1261, 1344, 1430, 1519, 1610, 1704, 1801, 1900, 2002, 2107, 2214, 2324, 2437, 2552, 2670, 2791, 2914, 3040, 3169
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Mar 03 2014

Keywords

Comments

The number of partitions of 4*(n-1) into at most 3 parts. - Colin Barker, Mar 31 2015

Examples

			Count the 1's in the last column for a(n):
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               4              10              19        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    a[1] = 4; a[n_] := (n/(n - 1))*a[n - 1] + 4 n*Sum[(Floor[(4 n - 2 - i)/2] - i)*(Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; b[n_] := a[n]/(4 n); Table[b[n] - b[n - 1], {n, 50}]
    LinearRecurrence[{2,-1,1,-2,1},{1,4,10,19,30},50] (* Harvey P. Dale, Jun 13 2015 *)
    Table[Count[IntegerPartitions[4 n,{4}],?(#[[-1]]==1&)],{n,50}] (* _Harvey P. Dale, Dec 29 2021 *)
  • PARI
    Vec(-x*(x+1)*(2*x^2+x+1)/((x-1)^3*(x^2+x+1)) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

G.f.: -x*(x+1)*(2*x^2+x+1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Mar 10 2014
a(n) = 2*a(n-1)-a(n-2)+a(n-3)-2*a(n-4)+a(n-5). - Wesley Ivan Hurt, Nov 18 2021

A238706 Sum of the smallest parts of the partitions of 4n into 4 parts with smallest part greater than 1.

Original entry on oeis.org

0, 2, 11, 36, 89, 183, 335, 565, 894, 1347, 1952, 2738, 3738, 4988, 6525, 8390, 10627, 13281, 16401, 20039, 24248, 29085, 34610, 40884, 47972, 55942, 64863, 74808, 85853, 98075, 111555, 126377, 142626, 160391, 179764, 200838, 223710, 248480, 275249, 304122
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Mar 03 2014

Keywords

Examples

			Add the numbers > 1 in the last column for a(n):
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     0               2              11              36        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[0,2,11,36,89,183,335]; [n le 7 select I[n] else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-5*Self(n-4)+6*Self(n-5)-4*Self(n-6)+Self(n-7): n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
  • Mathematica
    a[1] = 4; a[n_] := (n/(n - 1))*a[n - 1] + 4 n*Sum[(Floor[(4 n - 2 - i)/2] - i)*(Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; b[n_] := a[n]/(4 n); b[0] = 0; c[1] = 1; c[n_] := b[n] + c[n - 1]; Table[c[n] - (b[n] - b[n - 1]), {n, 50}]
    CoefficientList[Series[x (x - 2) (x + 1) (2 x^2 + x + 1)/((x - 1)^5 (x^2 + x + 1)), {x, 0, 40}],x] (* Vincenzo Librandi, Mar 24 2014 *)
    Table[Total[Select[IntegerPartitions[4n,{4}],#[[-1]]>1&][[All,-1]]],{n,40}] (* or *) LinearRecurrence[{4,-6,5,-5,6,-4,1},{0,2,11,36,89,183,335},40] (* Harvey P. Dale, Jan 06 2023 *)
  • PARI
    concat(0, Vec(x^2*(x-2)*(x+1)*(2*x^2+x+1)/((x-1)^5*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Mar 23 2014
    

Formula

G.f.: x^2*(x-2)*(x+1)*(2*x^2+x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Mar 23 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 5*a(n-4) + 6*a(n-5) - 4*a(n-6) + a(n-7) for n > 7. - Wesley Ivan Hurt, Oct 07 2017

A239056 Sum of the parts in the partitions of 4n into 4 parts with smallest part = 1.

Original entry on oeis.org

4, 32, 120, 304, 600, 1056, 1708, 2560, 3672, 5080, 6776, 8832, 11284, 14112, 17400, 21184, 25432, 30240, 35644, 41600, 48216, 55528, 63480, 72192, 81700, 91936, 103032, 115024, 127832, 141600, 156364, 172032, 188760, 206584, 225400, 245376, 266548, 288800
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 09 2014

Keywords

Comments

All terms are multiples of 4.

Examples

			For a(n) add the parts in the partitions of 4n with smallest part = 1.
                                              13 + 1 + 1 + 1
                                              12 + 2 + 1 + 1
                                              11 + 3 + 1 + 1
                                              10 + 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                              11 + 2 + 2 + 1
                                              10 + 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     4               32            120             304        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
    LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{4,32,120,304,600,1056,1708,2560},40] (* Harvey P. Dale, Oct 18 2018 *)
  • PARI
    Vec(4*x*(2*x^6+10*x^5+16*x^4+22*x^3+15*x^2+6*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

G.f.: 4*x*(2*x^6+10*x^5+16*x^4+22*x^3+15*x^2+6*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 10 2014
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 20 2024

A239057 Sum of the parts in the partitions of 4n into 4 parts with smallest part equal to 1 minus the number of these partitions.

Original entry on oeis.org

3, 28, 110, 285, 570, 1012, 1647, 2480, 3570, 4953, 6622, 8648, 11067, 13860, 17110, 20853, 25058, 29820, 35175, 41080, 47642, 54897, 62790, 71440, 80883, 91052, 102078, 113997, 126730, 140420, 155103, 170688, 187330, 205065, 223790, 243672, 264747, 286900
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 09 2014

Keywords

Examples

			For a(n) add the numbers in the first 3 columns.
                                               13 + 1 + 1 + 1
                                               12 + 2 + 1 + 1
                                               11 + 3 + 1 + 1
                                               10 + 4 + 1 + 1
                                                9 + 5 + 1 + 1
                                                8 + 6 + 1 + 1
                                                7 + 7 + 1 + 1
                                               11 + 2 + 2 + 1
                                               10 + 3 + 2 + 1
                               9 + 1 + 1 + 1    9 + 4 + 2 + 1
                               8 + 2 + 1 + 1    8 + 5 + 2 + 1
                               7 + 3 + 1 + 1    7 + 6 + 2 + 1
                               6 + 4 + 1 + 1    9 + 3 + 3 + 1
                               5 + 5 + 1 + 1    8 + 4 + 3 + 1
                               7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1   6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1   5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1   5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1   4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     3               28            110             285        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := (4 n - 1) Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]/(4 n); Table[b[n], {n, 50}]
    CoefficientList[Series[(2 x^2 + x + 3) (5 x^4 + 19 x^3 + 16 x^2 + 7 x + 1)/((x^2 + x + 1)^2 (x - 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 13 2014 *)

Formula

a(n) = A239056(n) - A238705(n).
G.f.: x*(2*x^2+x+3)*(5*x^4+19*x^3+16*x^2+7*x+1)/((x^2+x+1)^2*(x-1)^4). - Alois P. Heinz, Mar 11 2014
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 22 2024

A239059 Sum of the two smallest parts from the partitions of 4n into 4 parts with smallest part = 1.

Original entry on oeis.org

2, 9, 27, 61, 108, 178, 276, 395, 549, 743, 966, 1236, 1558, 1917, 2335, 2817, 3344, 3942, 4616, 5343, 6153, 7051, 8010, 9064, 10218, 11441, 12771, 14213, 15732, 17370, 19132, 20979, 22957, 25071, 27278, 29628, 32126, 34725, 37479, 40393, 43416, 46606, 49968
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 09 2014

Keywords

Examples

			For a(n) add the smallest two parts in the partitions with smallest part equal to 1.
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     2               9              27              61        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[((i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
  • PARI
    Vec(-x*(x^2+x+2)*(2*x^4-3*x^3-4*x^2-2*x-1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

G.f.: -x*(x^2+x+2)*(2*x^4-3*x^3-4*x^2-2*x-1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 10 2014
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 20 2024

A239186 Sum of the largest two parts in the partitions of 4n into 4 parts with smallest part equal to 1.

Original entry on oeis.org

2, 23, 93, 243, 492, 878, 1432, 2165, 3123, 4337, 5810, 7596, 9726, 12195, 15065, 18367, 22088, 26298, 31028, 36257, 42063, 48477, 55470, 63128, 71482, 80495, 90261, 100811, 112100, 124230, 137232, 151053, 165803, 181513, 198122, 215748, 234422, 254075
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 11 2014

Keywords

Examples

			For a(n) add the numbers in the first two columns.
                                              13 + 1 + 1 + 1
                                              12 + 2 + 1 + 1
                                              11 + 3 + 1 + 1
                                              10 + 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                              11 + 2 + 2 + 1
                                              10 + 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     2               23             93             243        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
  • PARI
    Vec(x*(10*x^6+39*x^5+61*x^4+76*x^3+49*x^2+19*x+2)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

G.f.: x*(10*x^6+39*x^5+61*x^4+76*x^3+49*x^2+19*x+2) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 12 2014
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8). - Wesley Ivan Hurt, Nov 19 2021

A256235 Sum of all the parts in the partitions of 5n into 5 parts.

Original entry on oeis.org

0, 5, 70, 450, 1680, 4800, 11310, 23590, 44600, 78615, 130550, 207075, 315600, 465790, 667940, 935250, 1281520, 1723970, 2280330, 2972455, 3822500, 4857510, 6104560, 7596325, 9365400, 11450750, 13890760, 16731225, 20017060, 23801315, 28135800, 33081495
Offset: 0

Views

Author

Colin Barker, Mar 20 2015

Keywords

Examples

			For n=2 there are 7 partitions of 5*2 = 10, so a(2) = 7*10 = 70.
		

Crossrefs

Programs

  • Mathematica
    Plus @@ Total /@ IntegerPartitions[5 #, {5}] & /@ Range[0, 31] (* Michael De Vlieger, Mar 20 2015 *)
    CoefficientList[Series[5 x (2 x^14 + 19 x^13 + 97 x^12 + 277 x^11 + 591 x^10 + 955 x^9 + 1267 x^8 + 1355 x^7 + 1217 x^6 + 880 x^5 + 520 x^4 + 231 x^3 + 75 x^2 + 13 x + 1) / ((x - 1)^6 (x + 1)^3 (x^2 + 1)^2 (x^2 + x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{1,1,1,0,-4,-1,-1,4,4,-1,-1,-4,0,1,1,1,-1},{0,5,70,450,1680,4800,11310,23590,44600,78615,130550,207075,315600,465790,667940,935250,1281520},40] (* Harvey P. Dale, Jun 14 2016 *)
  • PARI
    concat(0, Vec(5*x*(2*x^14 +19*x^13 +97*x^12 +277*x^11 +591*x^10 +955*x^9 +1267*x^8 +1355*x^7 +1217*x^6 +880*x^5 +520*x^4 +231*x^3 +75*x^2 +13*x +1) / ((x -1)^6*(x +1)^3*(x^2 +1)^2*(x^2 +x +1)^2) + O(x^100)))

Formula

a(n) = 5*n*A256225(n).
G.f.: 5*x*(2*x^14 +19*x^13 +97*x^12 +277*x^11 +591*x^10 +955*x^9 +1267*x^8 +1355*x^7 +1217*x^6 +880*x^5 +520*x^4 +231*x^3 +75*x^2 +13*x +1) / ((x -1)^6*(x +1)^3*(x^2 +1)^2*(x^2 +x +1)^2).

A256239 Sum of all the parts in the partitions of 6n into 6 parts.

Original entry on oeis.org

0, 6, 132, 1044, 4776, 15960, 43416, 102144, 215712, 419040, 761520, 1310628, 2155752, 3412656, 5228076, 7784910, 11307648, 16068264, 22392504, 30666570, 41344080, 54953640, 72106452, 93504798, 119950416, 152353650, 191742720, 239273514, 296239776, 364083690
Offset: 0

Views

Author

Colin Barker, Mar 20 2015

Keywords

Examples

			For n=2 there are 11 partitions of 6*2 = 12, so a(2) = 11*12 = 132.
		

Crossrefs

Programs

  • Mathematica
    Plus @@ Total /@ IntegerPartitions[6 #, {6}] & /@ Range[0, 29] (* Michael De Vlieger, Mar 20 2015 *)
    CoefficientList[Series[- 6 x (9 x^13 + 77 x^12 + 247 x^11 + 485 x^10 + 744 x^9 + 990 x^8 + 1109 x^7 + 1029 x^6 + 809 x^5 + 551 x^4 + 301 x^3 + 109 x^2 + 19 x + 1) / ((x - 1)^7 (x + 1)^2 (x^4 + x^3 + x^2 + x + 1)^2), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 20 2015 *)
    LinearRecurrence[{3,-1,-5,5,3,-9,3,10,-10,-3,9,-3,-5,5,1,-3,1},{0,6,132,1044,4776,15960,43416,102144,215712,419040,761520,1310628,2155752,3412656,5228076,7784910,11307648},30] (* Harvey P. Dale, Mar 07 2025 *)
  • PARI
    concat(0, Vec(-6*x*(9*x^13 +77*x^12 +247*x^11 +485*x^10 +744*x^9 +990*x^8 +1109*x^7 +1029*x^6 +809*x^5 +551*x^4 +301*x^3 +109*x^2 +19*x +1) / ((x -1)^7*(x +1)^2*(x^4 +x^3 +x^2 +x +1)^2) + O(x^100)))

Formula

a(n) = 6*n*A256226(n).
G.f.: -6*x*(9*x^13 +77*x^12 +247*x^11 +485*x^10 +744*x^9 +990*x^8 +1109*x^7 +1029*x^6 +809*x^5 +551*x^4 +301*x^3 +109*x^2 +19*x +1) / ((x -1)^7*(x +1)^2*(x^4 +x^3 +x^2 +x +1)^2).
Showing 1-10 of 18 results. Next