cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 11 results. Next

A007980 Expansion of (1+x^2)/((1-x)^2*(1-x^3)).

Original entry on oeis.org

1, 2, 4, 7, 10, 14, 19, 24, 30, 37, 44, 52, 61, 70, 80, 91, 102, 114, 127, 140, 154, 169, 184, 200, 217, 234, 252, 271, 290, 310, 331, 352, 374, 397, 420, 444, 469, 494, 520, 547, 574, 602, 631, 660, 690, 721, 752, 784, 817, 850, 884, 919, 954, 990, 1027, 1064
Offset: 0

Views

Author

Keywords

Comments

Molien series for ternary self-dual codes over GF(3) of length 12n containing 11...1.
(1+x)*(1+x^2) / ((1-x)*(1-x^2)*(1-x^3)) is the Poincaré series [or Poincare series] (or Molien series) for H^*(O_3(q); F_2).
a(n) is the position of the n-th triangular number in the running sum of the (pseudo-Orloj) sequence 1,2,1,2,1,2,1...., cf. A028355. - Wouter Meeussen, Mar 10 2002
a(n) = [a(n-1) + (number of even terms so far in the sequence)]. Example: 14 is [10 + 4 even terms so far in the sequence (they are 0,2,4,10)]. See A096777 for the same construction with odd integers. - Eric Angelini, Aug 05 2007
The number of partitions of 2*n into at most 3 parts. - Colin Barker, Mar 31 2015
Also a(n) equals the number of linearly-independent terms at 2n-th order in the power series expansion of a trigonal Rotational Energy Surface. An optimal basis for the expansion follows either decomposition: g1(x) = (1+x)(1+x^2)g2(x) or g1(x) = (1+x^2)x^(-1)g3(x), where g1(x), g2(x), g3(x) are the generating functions for sequences A007980, A001399, A001840. - Bradley Klee, Aug 06 2015
Also a(n) equals the number of linearly-independent terms at 4n-th order in the power series expansion of the symmetrized weight enumerator of a self-dual code of length n over Z4 that contains a vector (+/-)1^n and has all norms divisible by 8. An optimal basis for the expansion follows the decomposition: g1(x) = (1+x)(1+x^2)g2(x) where g1(x), g2(x) are the generating functions for sequences A007980, A001399. (Cf. Calderbank and Sloane, Corollary 5.) - Bradley Klee, Aug 06 2015
Also, a(n) is equal to the number of partitions of 2n+3 of length 3. Letting n=4, there are a(4)=10 partitions of 2n+3=11 of length 3: (9,1,1), (8,2,1), (7,3,1), (7,2,2), (6,4,1), (6,3,2), (5,5,1), (5,4,2), (5,3,3), (4,4,3). - John M. Campbell, Jan 30 2016
a(n) is the number of partitions of n into parts 1 (of two kinds), part 2 (occurring at most once), and parts 3. - Joerg Arndt, Oct 12 2020
Conjecture: a(n) is the maximum number of pieces a triangle can be cut into by n cevians. - Anton Zakharov, Apr 04 2017
Also, a(n) is the number of graphs which are double-triangle descendants of K_5 with n+6 triangles and 3 more vertices than triangles. See Laradji/Mishna/Yeats reference, proposition 3.6 for details. - Karen A. Yeats, Feb 21 2020

Examples

			G.f. = 1 + 2*x + 4*x^2 + 7*x^3 + 10*x^4 + 14*x^5 + 19*x^6 + 24*x^7 + ...
		

References

  • A. Adem and R. J. Milgram, Cohomology of Finite Groups, Springer-Verlag, 2nd. ed., 2004; p. 233.

Crossrefs

Programs

  • Maple
    with (combinat):seq(count(Partition((2*n+1)), size=3), n=1..56); # Zerinvary Lajos, Mar 28 2008
  • Mathematica
    Table[Ceiling[n (n+1)/3], {n, 56}]
    CoefficientList[Series[(1+x^2)/((1-x)^2*(1-x^3)),{x,0,60}],x] (* Vincenzo Librandi, Feb 25 2012 *)
    a[ n_] := Quotient[ n^2, 3] + n + 1; (* Michael Somos, Aug 23 2015 *)
    LinearRecurrence[{2,-1,1,-2,1},{1,2,4,7,10},60] (* Harvey P. Dale, Aug 24 2016 *)
  • PARI
    {a(n) = if( n<-1, a(-3-n), polcoeff( (1 + x^2) / ( (1 - x)^2 * (1 - x^3)) + x*O(x^n), n))}; /* Michael Somos, Jun 07 2003 */
    
  • PARI
    {a(n) = n^2\3 + n+1}; /* Michael Somos, Aug 23 2015 */
    
  • PARI
    a(n) = #partitions(2*n, ,[1,3]); \\ Michel Marcus, Feb 12 2016
    
  • PARI
    a(n) = #partitions(2*n+3, ,[3,3]); \\ Michel Marcus, Feb 12 2016

Formula

G.f.: (1 + x^2) / ((1 - x)^2 * (1 - x^3)). - Michael Somos, Jun 07 2003
a(n) = a(n-1) + a(n-3) -a(n-4) + 2 = a(-3-n) for all n in Z. - Michael Somos, Jun 07 2003
a(n) = ceiling((n+1)*(n+2)/3). - Paul Boddington, Jan 26 2004
a(n) = A192736(n+1) / (n+1). - Reinhard Zumkeller, Jul 08 2011
From Bruno Berselli, Oct 22 2010: (Start)
a(n) = ((n+1)*(n+2)+(2*cos(2*Pi*n/3)+1)/3)/3 = Sum_{i=1..n+1} A004396(i).
a(n) = 2*a(n-1) - a(n-2) + a(n-3) - 2*a(n-4) + a(n-5) for n>4.
a(n) = A002378(n+1)/3 if 3 divides A002378(n+1), a(n) = (A002378(n)+1)/3 otherwise. (End)
a(n) = A001840(n+1) + A001840(n-1). - R. J. Mathar, Aug 23 2015
From Michael Somos, Aug 23 2015: (Start)
Euler transform of length 4 sequence [2, 1, 1, -1].
a(n) = A001399(2*n) = A008796(2*n) = A008796(2*n + 3) = A069905(2*n + 3) = A211540(2*n + 5).
a(2*n) = A238705(n+1).
a(3*n - 1) = A049451(n).
a(3*n) = A003215(n).
a(3*n + 1) = A049450(n+1).
2*a(3*n - 1) = A005449(n).
2*a(3*n + 1) = A000326(n+1).
a(n+1) - a(n) = A004396(n+2). (End)
a(n) = floor((n^2+3*n+3)/3). - Giacomo Guglieri, May 01 2019
a(n) = A000212(n) + n+1. - Yuchun Ji, Oct 12 2020
Sum_{n>=0} 1/a(n) = (tanh(Pi/(2*sqrt(3)))-1)*Pi/sqrt(3) + 3. - Amiram Eldar, May 20 2023

A238706 Sum of the smallest parts of the partitions of 4n into 4 parts with smallest part greater than 1.

Original entry on oeis.org

0, 2, 11, 36, 89, 183, 335, 565, 894, 1347, 1952, 2738, 3738, 4988, 6525, 8390, 10627, 13281, 16401, 20039, 24248, 29085, 34610, 40884, 47972, 55942, 64863, 74808, 85853, 98075, 111555, 126377, 142626, 160391, 179764, 200838, 223710, 248480, 275249, 304122
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Mar 03 2014

Keywords

Examples

			Add the numbers > 1 in the last column for a(n):
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     0               2              11              36        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[0,2,11,36,89,183,335]; [n le 7 select I[n] else 4*Self(n-1)-6*Self(n-2)+5*Self(n-3)-5*Self(n-4)+6*Self(n-5)-4*Self(n-6)+Self(n-7): n in [1..40]]; // Vincenzo Librandi, Mar 24 2014
  • Mathematica
    a[1] = 4; a[n_] := (n/(n - 1))*a[n - 1] + 4 n*Sum[(Floor[(4 n - 2 - i)/2] - i)*(Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; b[n_] := a[n]/(4 n); b[0] = 0; c[1] = 1; c[n_] := b[n] + c[n - 1]; Table[c[n] - (b[n] - b[n - 1]), {n, 50}]
    CoefficientList[Series[x (x - 2) (x + 1) (2 x^2 + x + 1)/((x - 1)^5 (x^2 + x + 1)), {x, 0, 40}],x] (* Vincenzo Librandi, Mar 24 2014 *)
    Table[Total[Select[IntegerPartitions[4n,{4}],#[[-1]]>1&][[All,-1]]],{n,40}] (* or *) LinearRecurrence[{4,-6,5,-5,6,-4,1},{0,2,11,36,89,183,335},40] (* Harvey P. Dale, Jan 06 2023 *)
  • PARI
    concat(0, Vec(x^2*(x-2)*(x+1)*(2*x^2+x+1)/((x-1)^5*(x^2+x+1)) + O(x^100))) \\ Colin Barker, Mar 23 2014
    

Formula

G.f.: x^2*(x-2)*(x+1)*(2*x^2+x+1) / ((x-1)^5*(x^2+x+1)). - Colin Barker, Mar 23 2014
a(n) = 4*a(n-1) - 6*a(n-2) + 5*a(n-3) - 5*a(n-4) + 6*a(n-5) - 4*a(n-6) + a(n-7) for n > 7. - Wesley Ivan Hurt, Oct 07 2017

A239056 Sum of the parts in the partitions of 4n into 4 parts with smallest part = 1.

Original entry on oeis.org

4, 32, 120, 304, 600, 1056, 1708, 2560, 3672, 5080, 6776, 8832, 11284, 14112, 17400, 21184, 25432, 30240, 35644, 41600, 48216, 55528, 63480, 72192, 81700, 91936, 103032, 115024, 127832, 141600, 156364, 172032, 188760, 206584, 225400, 245376, 266548, 288800
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 09 2014

Keywords

Comments

All terms are multiples of 4.

Examples

			For a(n) add the parts in the partitions of 4n with smallest part = 1.
                                              13 + 1 + 1 + 1
                                              12 + 2 + 1 + 1
                                              11 + 3 + 1 + 1
                                              10 + 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                              11 + 2 + 2 + 1
                                              10 + 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     4               32            120             304        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
    LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{4,32,120,304,600,1056,1708,2560},40] (* Harvey P. Dale, Oct 18 2018 *)
  • PARI
    Vec(4*x*(2*x^6+10*x^5+16*x^4+22*x^3+15*x^2+6*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

G.f.: 4*x*(2*x^6+10*x^5+16*x^4+22*x^3+15*x^2+6*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 10 2014
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 20 2024

A239057 Sum of the parts in the partitions of 4n into 4 parts with smallest part equal to 1 minus the number of these partitions.

Original entry on oeis.org

3, 28, 110, 285, 570, 1012, 1647, 2480, 3570, 4953, 6622, 8648, 11067, 13860, 17110, 20853, 25058, 29820, 35175, 41080, 47642, 54897, 62790, 71440, 80883, 91052, 102078, 113997, 126730, 140420, 155103, 170688, 187330, 205065, 223790, 243672, 264747, 286900
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 09 2014

Keywords

Examples

			For a(n) add the numbers in the first 3 columns.
                                               13 + 1 + 1 + 1
                                               12 + 2 + 1 + 1
                                               11 + 3 + 1 + 1
                                               10 + 4 + 1 + 1
                                                9 + 5 + 1 + 1
                                                8 + 6 + 1 + 1
                                                7 + 7 + 1 + 1
                                               11 + 2 + 2 + 1
                                               10 + 3 + 2 + 1
                               9 + 1 + 1 + 1    9 + 4 + 2 + 1
                               8 + 2 + 1 + 1    8 + 5 + 2 + 1
                               7 + 3 + 1 + 1    7 + 6 + 2 + 1
                               6 + 4 + 1 + 1    9 + 3 + 3 + 1
                               5 + 5 + 1 + 1    8 + 4 + 3 + 1
                               7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1   6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1   5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1   5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1   4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     3               28            110             285        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := (4 n - 1) Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]/(4 n); Table[b[n], {n, 50}]
    CoefficientList[Series[(2 x^2 + x + 3) (5 x^4 + 19 x^3 + 16 x^2 + 7 x + 1)/((x^2 + x + 1)^2 (x - 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 13 2014 *)

Formula

a(n) = A239056(n) - A238705(n).
G.f.: x*(2*x^2+x+3)*(5*x^4+19*x^3+16*x^2+7*x+1)/((x^2+x+1)^2*(x-1)^4). - Alois P. Heinz, Mar 11 2014
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 22 2024

A239059 Sum of the two smallest parts from the partitions of 4n into 4 parts with smallest part = 1.

Original entry on oeis.org

2, 9, 27, 61, 108, 178, 276, 395, 549, 743, 966, 1236, 1558, 1917, 2335, 2817, 3344, 3942, 4616, 5343, 6153, 7051, 8010, 9064, 10218, 11441, 12771, 14213, 15732, 17370, 19132, 20979, 22957, 25071, 27278, 29628, 32126, 34725, 37479, 40393, 43416, 46606, 49968
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 09 2014

Keywords

Examples

			For a(n) add the smallest two parts in the partitions with smallest part equal to 1.
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     2               9              27              61        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[((i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
  • PARI
    Vec(-x*(x^2+x+2)*(2*x^4-3*x^3-4*x^2-2*x-1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

G.f.: -x*(x^2+x+2)*(2*x^4-3*x^3-4*x^2-2*x-1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 10 2014
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 20 2024

A239186 Sum of the largest two parts in the partitions of 4n into 4 parts with smallest part equal to 1.

Original entry on oeis.org

2, 23, 93, 243, 492, 878, 1432, 2165, 3123, 4337, 5810, 7596, 9726, 12195, 15065, 18367, 22088, 26298, 31028, 36257, 42063, 48477, 55470, 63128, 71482, 80495, 90261, 100811, 112100, 124230, 137232, 151053, 165803, 181513, 198122, 215748, 234422, 254075
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 11 2014

Keywords

Examples

			For a(n) add the numbers in the first two columns.
                                              13 + 1 + 1 + 1
                                              12 + 2 + 1 + 1
                                              11 + 3 + 1 + 1
                                              10 + 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                              11 + 2 + 2 + 1
                                              10 + 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     2               23             93             243        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
  • PARI
    Vec(x*(10*x^6+39*x^5+61*x^4+76*x^3+49*x^2+19*x+2)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

G.f.: x*(10*x^6+39*x^5+61*x^4+76*x^3+49*x^2+19*x+2) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 12 2014
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8). - Wesley Ivan Hurt, Nov 19 2021

A239667 Sum of the largest parts of the partitions of 4n into 4 parts.

Original entry on oeis.org

1, 17, 84, 262, 629, 1289, 2370, 4014, 6393, 9703, 14150, 19974, 27439, 36815, 48410, 62556, 79587, 99879, 123832, 151844, 184359, 221845, 264764, 313628, 368973, 431325, 501264, 579394, 666305, 762645, 869086, 986282, 1114949, 1255827, 1409634, 1577154, 1759195, 1956539, 2170038, 2400568
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Mar 23 2014

Keywords

Examples

			Add the numbers in the first column for a(n):
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               17             84             262        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[1,17,84,262,629,1289,2370,4014,6393]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-6*Self(n-4)+6*Self(n-5)-3*Self(n-6)+3*Self(n-7)-3*Self(n-8)+Self(n-9): n in [1..45]]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    CoefficientList[Series[-(9*x^6 + 32*x^5 + 50*x^4 + 58*x^3 + 36*x^2 + 14*x +
    1)/((x - 1)^5*(x^2 + x + 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 13 2014 *)
    LinearRecurrence[{3, -3, 3, -6, 6, -3, 3, -3, 1}, {1, 17, 84, 262, 629, 1289, 2370, 4014, 6393}, 50](* Vincenzo Librandi, Aug 29 2015 *)
    Table[Total[IntegerPartitions[4 n,{4}][[All,1]]],{n,40}] (* Harvey P. Dale, Apr 25 2020 *)
  • PARI
    Vec(-x*(9*x^6+32*x^5+50*x^4+58*x^3+36*x^2+14*x+1) / ((x-1)^5*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Mar 23 2014
    

Formula

G.f.: -x*(9*x^6+32*x^5+50*x^4+58*x^3+36*x^2+14*x+1) / ((x-1)^5*(x^2+x+1)^2). - Colin Barker, Mar 23 2014
Let b(1) = 4, with b(n) = (n/(n-1)) * b(n-1) + 4n * Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * floor((sign(floor((4n-2-i)/2)-i)+2)/2). Then a(1) = 1, with a(n) = a(n-1) + b(n-1)/(4n-4) + Sum_{i=j+1..floor((4n-2-j)/2)} ( Sum_{j=0..2n} (4n-2-i-j) * floor((sign(floor((4n-2-j)/2)-j)+2)/2) ). - Wesley Ivan Hurt, Jun 13 2014

A240707 Sum of the middle parts in the partitions of 4n-1 into 3 parts.

Original entry on oeis.org

1, 8, 31, 80, 159, 282, 459, 690, 993, 1378, 1841, 2404, 3077, 3852, 4755, 5796, 6963, 8286, 9775, 11414, 13237, 15254, 17445, 19848, 22473, 25296, 28359, 31672, 35207, 39010, 43091, 47418, 52041, 56970, 62169, 67692, 73549, 79700, 86203, 93068, 100251
Offset: 1

Views

Author

Wesley Ivan Hurt, Apr 10 2014

Keywords

Comments

Original definition: Sum of the second largest parts in the partitions of 4n into 4 parts with smallest part = 1 (see the example).

Examples

			For a(n) add the parts in the second columns.
                                              13 + 1 + 1 + 1
                                              12 + 2 + 1 + 1
                                              11 + 3 + 1 + 1
                                              10 + 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                              11 + 2 + 2 + 1
                                              10 + 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               8              31              80        ..   a(n)
		

Crossrefs

Programs

  • Maple
    A240707:=n->add(add(i*floor((signum((floor((4*n-2-j)/2)-j))+2)/2), i=j+1..floor((4*n-2-j)/2)), j=0..2*n); seq(A240707(n), n=1..50);
  • Mathematica
    c[n_] := Sum[Sum[i (Floor[(Sign[(Floor[(4 n - 2 - j)/2] - j)] + 2)/2]), {i, j + 1, Floor[(4 n - 2 - j)/2]}], {j, 0, 2 n}]; Table[c[n], {n, 50}]
  • PARI
    Vec(x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 13 2014
    
  • PARI
    A240707(n)=sum(a=1,(4*n-1)\3,(4*n-1-a)\2*((4*n-1-a)\2+1)-a*(a-1))\2 \\ The summand is sum(b=a,(4*n-1-a)\2,b). - M. F. Hasler, Apr 17 2014

Formula

G.f.: x*(x^2+3*x+1)*(3*x^4+3*x^3+6*x^2+3*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Apr 13 2014

Extensions

Definition simplified by M. F. Hasler, Apr 17 2014

A241084 Sum of the second largest parts of the partitions of 4n into 4 parts.

Original entry on oeis.org

1, 10, 46, 141, 334, 680, 1247, 2106, 3348, 5077, 7396, 10432, 14325, 19210, 25250, 32621, 41490, 52056, 64531, 79114, 96040, 115557, 137896, 163328, 192137, 224586, 260982, 301645, 346870, 397000, 452391, 513370, 580316, 653621, 733644, 820800, 915517, 1018186, 1129258, 1249197
Offset: 1

Views

Author

Wesley Ivan Hurt and Antonio Osorio, Apr 15 2014

Keywords

Examples

			For a(n) add the numbers in the second columns.
                                             13 + 1 + 1 + 1
                                             12 + 2 + 1 + 1
                                             11 + 3 + 1 + 1
                                             10 + 4 + 1 + 1
                                              9 + 5 + 1 + 1
                                              8 + 6 + 1 + 1
                                              7 + 7 + 1 + 1
                                             11 + 2 + 2 + 1
                                             10 + 3 + 2 + 1
                                              9 + 4 + 2 + 1
                                              8 + 5 + 2 + 1
                                              7 + 6 + 2 + 1
                                              9 + 3 + 3 + 1
                                              8 + 4 + 3 + 1
                                              7 + 5 + 3 + 1
                                              6 + 6 + 3 + 1
                                              7 + 4 + 4 + 1
                                              6 + 5 + 4 + 1
                                              5 + 5 + 5 + 1
                              9 + 1 + 1 + 1  10 + 2 + 2 + 2
                              8 + 2 + 1 + 1   9 + 3 + 2 + 2
                              7 + 3 + 1 + 1   8 + 4 + 2 + 2
                              6 + 4 + 1 + 1   7 + 5 + 2 + 2
                              5 + 5 + 1 + 1   6 + 6 + 2 + 2
                              7 + 2 + 2 + 1   8 + 3 + 3 + 2
                              6 + 3 + 2 + 1   7 + 4 + 3 + 2
                              5 + 4 + 2 + 1   6 + 5 + 3 + 2
                              5 + 3 + 3 + 1   6 + 4 + 4 + 2
                              4 + 4 + 3 + 1   5 + 5 + 4 + 2
               5 + 1 + 1 + 1  6 + 2 + 2 + 2   7 + 3 + 3 + 3
               4 + 2 + 1 + 1  5 + 3 + 2 + 2   6 + 4 + 3 + 3
               3 + 3 + 1 + 1  4 + 4 + 2 + 2   5 + 5 + 3 + 3
               3 + 2 + 2 + 1  4 + 3 + 3 + 2   5 + 4 + 4 + 3
1 + 1 + 1 + 1  2 + 2 + 2 + 2  3 + 3 + 3 + 3   4 + 4 + 4 + 4
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               10             46             141        ..   a(n)
		

Crossrefs

Programs

  • Magma
    I:=[1,10,46,141,334,680,1247,2106,3348]; [n le 9 select I[n] else 3*Self(n-1)-3*Self(n-2)+3*Self(n-3)-6*Self(n-4)+6*Self(n-5)-3*Self(n-6)+3*Self(n-7)-3*Self(n-8)+Self(n-9): n in [1..45]]; // Vincenzo Librandi, Aug 29 2015
  • Mathematica
    CoefficientList[Series[-(5*x^6 + 17*x^5 + 25*x^4 + 30*x^3 + 19*x^2 + 7*x + 1)/((x - 1)^5*(x^2 + x + 1)^2), {x, 0, 50}], x] (* Wesley Ivan Hurt, Jun 13 2014 *)
    LinearRecurrence[{3, -3, 3, -6, 6, -3, 3, -3, 1}, {1, 10, 46, 141, 334, 680, 1247, 2106, 3348}, 50] (* Vincenzo Librandi, Aug 29 2015 *)
    Table[Total[IntegerPartitions[4 n,{4}][[;;,2]]],{n,40}] (* Harvey P. Dale, Aug 17 2024 *)
  • PARI
    Vec(-x*(5*x^6+17*x^5+25*x^4+30*x^3+19*x^2+7*x+1)/((x-1)^5*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Apr 16 2014
    

Formula

G.f.: -x*(5*x^6+17*x^5+25*x^4+30*x^3+19*x^2+7*x+1) / ((x-1)^5*(x^2+x+1)^2). - Colin Barker, Apr 16 2014
Recurrence: Let b(1) = 4, with b(n) = (n/(n-1)) * b(n-1) + 4n*Sum_{i=0..2n} (floor((4n-2-i)/2)-i) * (floor((sign((floor((4n-2-i)/2)-i))+2)/2)) for n>1. Then a(1) = 1, with a(n) = a(n-1) + b(n-1)/(4n-4) + Sum_{j=0..2n} (Sum_{i=j+1..floor((4n-2-j)/2)} i * (floor((sign((floor((4n-2-j)/2)-j))+ 2)/2)) ), for n>1. - Wesley Ivan Hurt, Jun 27 2014

A239195 Sum of the next to smallest parts in the partitions of 4n into 4 parts with smallest part = 1.

Original entry on oeis.org

1, 5, 17, 42, 78, 134, 215, 315, 447, 616, 812, 1052, 1341, 1665, 2045, 2486, 2970, 3522, 4147, 4823, 5579, 6420, 7320, 8312, 9401, 10557, 11817, 13186, 14630, 16190, 17871, 19635, 21527, 23552, 25668, 27924, 30325, 32825, 35477, 38286, 41202, 44282, 47531
Offset: 1

Views

Author

Wesley Ivan Hurt, Mar 11 2014

Keywords

Examples

			For a(n) add the numbers in the third columns.
                                               13+ 1 + 1 + 1
                                               12+ 2 + 1 + 1
                                               11+ 3 + 1 + 1
                                               10+ 4 + 1 + 1
                                               9 + 5 + 1 + 1
                                               8 + 6 + 1 + 1
                                               7 + 7 + 1 + 1
                                               11+ 2 + 2 + 1
                                               10+ 3 + 2 + 1
                              9 + 1 + 1 + 1    9 + 4 + 2 + 1
                              8 + 2 + 1 + 1    8 + 5 + 2 + 1
                              7 + 3 + 1 + 1    7 + 6 + 2 + 1
                              6 + 4 + 1 + 1    9 + 3 + 3 + 1
                              5 + 5 + 1 + 1    8 + 4 + 3 + 1
                              7 + 2 + 2 + 1    7 + 5 + 3 + 1
               5 + 1 + 1 + 1  6 + 3 + 2 + 1    6 + 6 + 3 + 1
               4 + 2 + 1 + 1  5 + 4 + 2 + 1    7 + 4 + 4 + 1
               3 + 3 + 1 + 1  5 + 3 + 3 + 1    6 + 5 + 4 + 1
1 + 1 + 1 + 1  3 + 2 + 2 + 1  4 + 4 + 3 + 1    5 + 5 + 5 + 1
    4(1)            4(2)           4(3)            4(4)       ..   4n
------------------------------------------------------------------------
     1               5              17              42        ..   a(n)
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Sum[(((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) - ((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i)) - ((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i))/(4 n)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]; Table[b[n], {n, 50}]
    LinearRecurrence[{2,-1,2,-4,2,-1,2,-1},{1,5,17,42,78,134,215,315},60] (* Harvey P. Dale, Jul 05 2025 *)
  • PARI
    Vec(x*(4*x^5+5*x^4+11*x^3+8*x^2+3*x+1)/((x-1)^4*(x^2+x+1)^2) + O(x^100)) \\ Colin Barker, Sep 22 2014

Formula

G.f.: x*(4*x^5+5*x^4+11*x^3+8*x^2+3*x+1) / ((x-1)^4*(x^2+x+1)^2). - Colin Barker, Mar 12 2014
a(n) = 2*a(n-1)-a(n-2)+2*a(n-3)-4*a(n-4)+2*a(n-5)-a(n-6)+2*a(n-7)-a(n-8). - Wesley Ivan Hurt, Jul 08 2025
Showing 1-10 of 11 results. Next