A239057 Sum of the parts in the partitions of 4n into 4 parts with smallest part equal to 1 minus the number of these partitions.
3, 28, 110, 285, 570, 1012, 1647, 2480, 3570, 4953, 6622, 8648, 11067, 13860, 17110, 20853, 25058, 29820, 35175, 41080, 47642, 54897, 62790, 71440, 80883, 91052, 102078, 113997, 126730, 140420, 155103, 170688, 187330, 205065, 223790, 243672, 264747, 286900
Offset: 1
Keywords
Examples
For a(n) add the numbers in the first 3 columns. 13 + 1 + 1 + 1 12 + 2 + 1 + 1 11 + 3 + 1 + 1 10 + 4 + 1 + 1 9 + 5 + 1 + 1 8 + 6 + 1 + 1 7 + 7 + 1 + 1 11 + 2 + 2 + 1 10 + 3 + 2 + 1 9 + 1 + 1 + 1 9 + 4 + 2 + 1 8 + 2 + 1 + 1 8 + 5 + 2 + 1 7 + 3 + 1 + 1 7 + 6 + 2 + 1 6 + 4 + 1 + 1 9 + 3 + 3 + 1 5 + 5 + 1 + 1 8 + 4 + 3 + 1 7 + 2 + 2 + 1 7 + 5 + 3 + 1 5 + 1 + 1 + 1 6 + 3 + 2 + 1 6 + 6 + 3 + 1 4 + 2 + 1 + 1 5 + 4 + 2 + 1 7 + 4 + 4 + 1 3 + 3 + 1 + 1 5 + 3 + 3 + 1 6 + 5 + 4 + 1 1 + 1 + 1 + 1 3 + 2 + 2 + 1 4 + 4 + 3 + 1 5 + 5 + 5 + 1 4(1) 4(2) 4(3) 4(4) .. 4n ------------------------------------------------------------------------ 3 28 110 285 .. a(n)
Links
- Vincenzo Librandi, Table of n, a(n) for n = 1..1000
- Index entries for sequences related to partitions
- Index entries for linear recurrences with constant coefficients, signature (2,-1,2,-4,2,-1,2,-1).
Programs
-
Mathematica
b[n_] := (4 n - 1) Sum[((4 n - 2 - i)*Floor[(4 n - 2 - i)/2] - i (4 n - 2 - i) + (i + 2) (Floor[(4 n - 2 - i)/2] - i)) (Floor[(Sign[(Floor[(4 n - 2 - i)/2] - i)] + 2)/2]), {i, 0, 2 n}]/(4 n); Table[b[n], {n, 50}] CoefficientList[Series[(2 x^2 + x + 3) (5 x^4 + 19 x^3 + 16 x^2 + 7 x + 1)/((x^2 + x + 1)^2 (x - 1)^4), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 13 2014 *)
Formula
G.f.: x*(2*x^2+x+3)*(5*x^4+19*x^3+16*x^2+7*x+1)/((x^2+x+1)^2*(x-1)^4). - Alois P. Heinz, Mar 11 2014
a(n) = 2*a(n-1) - a(n-2) + 2*a(n-3) - 4*a(n-4) + 2*a(n-5) - a(n-6) + 2*a(n-7) - a(n-8). - Wesley Ivan Hurt, Jun 22 2024
Comments