cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238372 Number of labeled rooted trees with n nodes with every leaf at the same height.

Original entry on oeis.org

1, 2, 9, 40, 265, 1956, 18529, 183520, 2226753, 28663300, 421589641, 6696832704, 117283627201, 2190260755060, 44645172510345, 964646320357696, 22317294448547329, 547594529028427908, 14246751684203363593, 390309056795283743200, 11276891642831796476481
Offset: 1

Views

Author

F. Chapoton, Feb 25 2014

Keywords

Examples

			On 4 vertices, there are:
24 rooted trees X-O-O-O
12 rooted trees X-O-O
                   \
                    O
4 rooted trees    X
                 /|\
                O O O
		

Crossrefs

Cf. A048816 for the unlabeled version.

Programs

  • Maple
    p:= proc(i) p(i):= `if`(i=1, x, x*(exp(p(i-1))-1)) end:
    s:= proc(n) s(n):= `if`(n=0, 0, s(n-1)+p(n)) end:
    a:= n-> n! * coeff(series(s(n), x, n+1), x, n):
    seq(a(n), n=1..25);  # Alois P. Heinz, Feb 26 2014
  • Mathematica
    T[n_, n_] = 1; T[n_, m_] := T[n, m] = n!/(n-m)!*Sum[StirlingS2[k, m]*T[n-m, k], {k, 1, n-m}]; a[n_] := T[n, 1]; Array[a, 25] (* Jean-François Alcover, Jan 08 2016, after Vladimir Kruchinin *)
  • Maxima
    T(n,m):=if n=m then 1 else n!/(n-m)!*sum(stirling2(k,m)*T(n-m,k),k,1,n-m);
    makelist(T(n,1),n,1,15); /* Vladimir Kruchinin, Apr 01 2015 */
  • Sage
    x = QQ[['x']].gen()
    P = {}
    N = 20
    P[1] = x.O(N)
    for i in range(2, N):
        P[i] = x*(P[i-1].exp(N)-1)
    add(P[u] for u in P)
    

Formula

E.g.f.: Sum_{i>=1} P_i with P_1 = x and P_i = x * (exp(P_{i-1})-1) for i>1.
a(n) = T(n,1), T(n,m) = n!/(n-m)!*Sum_{k=1..n-m}(stirling2(k,m)*T(n-m,k)), T(n,n)=1. - Vladimir Kruchinin, Apr 01 2015