A238410 a(n) = floor((3(n-1)^2 + 1)/2).
0, 2, 6, 14, 24, 38, 54, 74, 96, 122, 150, 182, 216, 254, 294, 338, 384, 434, 486, 542, 600, 662, 726, 794, 864, 938, 1014, 1094, 1176, 1262, 1350, 1442, 1536, 1634, 1734, 1838, 1944, 2054, 2166, 2282, 2400, 2522, 2646, 2774, 2904, 3038, 3174, 3314, 3456, 3602, 3750, 3902, 4056, 4214, 4374, 4538, 4704
Offset: 1
Links
- Matthew House, Table of n, a(n) for n = 1..10000
- M. J. Morgan, S. Mukwembi and H. C. Swart, On the eccentric connectivity index of a graph, Discrete Math., 311, 2011, 1229-1234.
- B. Zhou and Zh. Du, On eccentric connectivity index, Comm. Math. Comp. Chem. (MATCH), 63, 2010, 181-198.
- Index entries for linear recurrences with constant coefficients, signature (2,0,-2,1).
Programs
-
Maple
a := proc (n) options operator, arrow: floor((3/2)*(n-1)^2+1/2) end proc: seq(a(n), n = 1 .. 70);
-
Mathematica
Table[Floor[(3(n-1)^2+1)/2],{n,80}] (* or *) LinearRecurrence[{2,0,-2,1},{0,2,6,14},80] (* Harvey P. Dale, Apr 30 2022 *)
-
PARI
a(n)=(3*(n-1)^2 + 1)\2 \\ Charles R Greathouse IV, Feb 15 2017
Formula
a(n) = (3*n)^2/6 for n even and a(n) = ((3*n)^2 + 3)/6 for n odd. - Miquel Cerda, Jun 17 2016
From Ilya Gutkovskiy, Jun 17 2016: (Start)
G.f.: 2*x^2*(1 + x + x^2)/((1 - x)^3*(1 + x)).
a(n) = (6*n^2 - 12*n + 7 + (-1)^n)/4.
a(n) = 2* A077043(n-1). (End)
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4). - Matthew House, Feb 15 2017
Sum_{n>=2} 1/a(n) = Pi^2/36 + tanh(Pi/(2*sqrt(3)))*Pi/(2*sqrt(3)). - Amiram Eldar, Mar 12 2023
Comments