A238601 A sixth-order linear divisibility sequence related to the Fibonacci numbers: a(n) := (1/10)*Fibonacci(3*n)*Fibonacci(5*n)/Fibonacci(n).
1, 44, 1037, 32472, 915305, 26874892, 776952553, 22595381424, 655633561309, 19040507781020, 552780012054689, 16050219184005336, 466002944275859873, 13530204273746536948, 392841165312292809085, 11405932444267712654688, 331164788382150547106857, 9615185834308570310716196
Offset: 1
Examples
G.f. = x + 44*x^2 + 1037*x^3 + 32472*x^4 + 915305*x^5 + 26874892*x^6 + ... - _Michael Somos_, May 07 2017
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
- P. Bala, Divisibility sequences from strong divisibility sequences
- Wikipedia, Divisibility sequence
- Wikipedia, Fibonacci number
- Wikipedia, Lucas Sequence
- Index entries for linear recurrences with constant coefficients, signature (22,250,-1320,-250,22,1).
Programs
-
Magma
[(Fibonacci(3*n) + (-1)^n*Fibonacci(5*n) + Fibonacci(7*n))/10: n in [1..30]]; // G. C. Greubel, Aug 07 2018
-
Maple
with(combinat): seq(1/10*fibonacci(3*n)*fibonacci(5*n)/fibonacci(n), n = 1..20);
-
Mathematica
Table[(1/10)*(Fibonacci[3*n] + (-1)^n*Fibonacci[5*n] + Fibonacci[7*n]), {n, 0, 50}] (* G. C. Greubel, Aug 07 2018 *)
-
PARI
{a(n) = if(n, fibonacci(3*n) * fibonacci(5*n) / (10 * fibonacci(n)), 0)} /* Michael Somos, May 07 2017 */
Formula
a(n) = (1/10)*(Fibonacci(3*n) + (-1)^n*Fibonacci(5*n) + Fibonacci(7*n)).
The sequence can be extended to negative indices using a(-n) = (-1)^(n+1)*a(n).
O.g.f. x*(1 + 22*x - 181*x^2 - 22*x^3 + x^4)/( (1 - 4*x - x^2)*(1 + 11*x - x^2)*(1 - 29*x - x^2) ).
Recurrence equation: a(n) = 22*a(n-1) + 250*a(n-2) - 1320*a(n-3) - 250*a(n-4) + 22*a(n-5) + a(n-6).
Comments