A238600 A sixth-order linear divisibility sequence related to the Fibonacci numbers: a(n) := (1/6)*Fibonacci(3*n)*Fibonacci(4*n)/Fibonacci(n).
1, 28, 408, 7896, 137555, 2496144, 44599477, 801617712, 14375440584, 258018516140, 4629531440711, 83076469908768, 1490726895438793, 26750144944686436, 480010941060482040, 8613453244178393184, 154562103244937408987, 2773504708179098411952
Offset: 1
Links
- G. C. Greubel, Table of n, a(n) for n = 1..500
- P. Bala, Divisibility sequences from strong divisibility sequences
- Wikipedia, Divisibility sequence
- Wikipedia, Fibonacci number
- Wikipedia, Lucas Sequence
- Index entries for linear recurrences with constant coefficients, signature (14,90,-350,90,14,-1).
Programs
-
Magma
[(Fibonacci(2*n) + (-1)^n*Fibonacci(4*n) + Fibonacci(6*n))/6: n in [1..30]]; // G. C. Greubel, Aug 07 2018
-
Maple
with(combinat): seq(1/6*fibonacci(3*n)*fibonacci(4*n)/fibonacci(n), n = 1..20);
-
Mathematica
Table[(1/6)*(Fibonacci[2*n] + (-1)^n*Fibonacci[4*n] + Fibonacci[6*n]), {n, 1, 500}] (* G. C. Greubel, Aug 07 2018 *) LinearRecurrence[{14,90,-350,90,14,-1},{1,28,408,7896,137555,2496144},20] (* Harvey P. Dale, Aug 26 2020 *)
-
PARI
vector(30, n, (fibonacci(2*n) + (-1)^n*fibonacci(4*n) + fibonacci(6*n))/6) \\ G. C. Greubel, Aug 07 2018
Formula
a(n) = (1/6)*Fibonacci(3*n)*Fibonacci(4*n)/Fibonacci(n).
a(n) = (1/6)*( Fibonacci(2*n) + (-1)^n*Fibonacci(4*n) + Fibonacci(6*n) ).
The sequence can be extended to negative indices when a(-n) = -a(n).
O.g.f. x*(1 + 14*x - 74*x^2 + 14*x^3 + x^4)/( (1 - 3*x + x^2)*(1 + 7*x + x^2)*(1 - 18*x + x^2) ).
Recurrence equation: a(n) = 14*a(n-1) + 90*a(n-2) - 350*a(n-3) + 90*a(n-4) + 14*a(n-5) - a(n-6).
Comments