A215466 Expansion of x*(1-4*x+x^2) / ( (x^2-7*x+1)*(x^2-3*x+1) ).
0, 1, 6, 38, 252, 1705, 11628, 79547, 544824, 3733234, 25585230, 175356611, 1201893336, 8237850373, 56462937882, 387002396990, 2652553009008, 18180866487757, 124613506702404, 854113665498719, 5854182112700460
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- Wikipedia, Lucas sequence
- Peter Bala, Divisibility sequences from strong divisibility sequences
- E. L. Roettger and H. C. Williams, Appearance of Primes in Fourth-Order Odd Divisibility Sequences, J. Int. Seq., Vol. 24 (2021), Article 21.7.5.
- H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
- H. C. Williams and R. K. Guy, Odd and even linear divisibility sequences of order 4, INTEGERS, 2015, #A33.
- Index to divisibility sequences
- Index entries for linear recurrences with constant coefficients, signature (10,-23,10,-1).
Programs
-
Magma
I:=[0,1,6,38]; [n le 4 select I[n] else 10*Self(n-1)-23*Self(n-2)+10*Self(n-3)-Self(n-4): n in [1..30]]; // Vincenzo Librandi, Dec 23 2012
-
Magma
/* By definition: */ m:=20; R
:=PowerSeriesRing(Integers(), m); [0] cat Coefficients(R!((1-4*x+x^2)/((x^2-7*x+1)*(x^2-3*x+1)))); // Bruno Berselli, Dec 24 2012 -
Maple
A215466 := proc(n) if type(n,'even') then A000032(n)*combinat[fibonacci](3*n)/4 ; else combinat[fibonacci](n)*A000032(3*n)/4 ; end if; end proc:
-
Mathematica
CoefficientList[Series[x*(1 - 4*x + x^2)/((x^2 - 7*x + 1)*(x^2 - 3*x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Dec 23 2012 *) LinearRecurrence[{10,-23,10,-1},{0,1,6,38},30] (* Harvey P. Dale, Nov 02 2015 *)
-
PARI
a(n)=([0,1,0,0; 0,0,1,0; 0,0,0,1; -1,10,-23,10]^n*[0;1;6;38])[1,1] \\ Charles R Greathouse IV, Nov 13 2015
-
PARI
{a(n) = my(w=quadgen(5)^(2*n)); imag(w^2+w)/4}; /* Michael Somos, Dec 29 2022 */
Formula
a(n) = 10*a(n-1) - 23*a(n-2) + 10*a(n-3) - a(n-4), a(0)=0, a(1)=1, a(2)=6, a(3)=38. - Harvey P. Dale, Nov 02 2015
a(n) = (1/4)*(Fibonacci(2*n) + Fibonacci(4*n)) = (1/4)*(A001906(n) + A033888(n)). - Peter Bala, Aug 05 2019
E.g.f.: exp(5*x/2)*(cosh(x)+exp(x)*cosh(sqrt(5)*x))*sinh(sqrt(5)*x/2)/sqrt(5). - Stefano Spezia, Aug 17 2019
a(n) = -a(-n) for all n in Z. - Michael Somos, Dec 29 2022
Comments