cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A238826 a(n) = p(n+3)-p(n+1), where p(n) = A238825(n).

Original entry on oeis.org

1, 2, 4, 9, 22, 53, 131, 323, 798, 1968, 4853, 11958, 29463, 72581, 178803, 440474, 1085110, 2673183, 6585468, 16223521, 39967243, 98460769, 242561730, 597559646, 1472109847, 3626595728, 8934249307, 22009844973, 54222045921, 133577963318, 329074124992, 810685962909
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=LaurentSeriesRing(RationalField(), m); Coefficients(R! -x*(1+x)*(x^3+x^2-1)*(x-1)^2 / ( 1-3*x+4*x^3-x^4-x^5-3*x^6+x^7)); // Vincenzo Librandi, Mar 21 2014
  • Maple
    g:=proc(n) option remember; local t1;
    t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1;
    t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1;
    t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    [seq(p(n+3)-p(n+1),n=1..32)]; #A238826
  • Mathematica
    CoefficientList[Series[-(1 + x) (x^3 + x^2 - 1) (x - 1)^2/(1 - 3 x + 4 x^3 - x^4 - x^5 - 3 x^6 + x^7), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
    LinearRecurrence[{3,0,-4,1,1,3,-1},{1,2,4,9,22,53,131},40] (* Harvey P. Dale, Aug 15 2025 *)

Formula

G.f.: -x*(1+x)*(x^3+x^2-1)*(x-1)^2 / ( 1-3*x+4*x^3-x^4-x^5-3*x^6+x^7 ). - R. J. Mathar, Mar 20 2014

A238827 a(n) = 0 for n <= 3; thereafter a(n) = a(n-2)+A238825(n-3).

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 1, 2, 6, 13, 33, 77, 191, 464, 1147, 2819, 6956, 17132, 42228, 104026, 256303, 631394, 1555488, 3831945, 9440141, 23256017, 57292037, 141140858, 347705663, 856585345, 2110229136, 5198625560, 12807001916, 31550510748, 77725820617, 191480359254, 471718764310, 1162096170669
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=LaurentSeriesRing(RationalField(), m); [0,0,0,0,0,0] cat Coefficients(R! -x^7*(-1+x^2+x^3) / ( (1+x)*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1))); // Vincenzo Librandi, Mar 21 2014
  • Maple
    g:=proc(n) option remember; local t1;
    t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1;
    t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1;
    t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    [seq(p(n+3)-p(n+1),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1;
    t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
  • Mathematica
    CoefficientList[Series[- x^6 (- 1 + x^2 + x^3)/((1 + x) (x^7 - 3 x^6 - x^5 - x^4 + 4 x^3 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
    LinearRecurrence[{2,3,-4,-3,2,4,2,-1},{0,0,0,0,0,0,1,2,6,13},40] (* Harvey P. Dale, Jun 26 2020 *)

Formula

G.f.: -x^7*(-1+x^2+x^3) / ( (1+x)*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1) ). - R. J. Mathar, Mar 20 2014

A238828 a(0)=0; thereafter a(n) = A238824(n-1)+A238825(n).

Original entry on oeis.org

0, 0, 1, 2, 5, 12, 28, 70, 169, 420, 1030, 2546, 6266, 15452, 38056, 93774, 230993, 569084, 1401913, 3453690, 8508214, 20960336, 51636447, 127208350, 313382262, 772028708, 1901920456, 4685449914, 11542774524, 28436041324, 70053211913, 172578611878
Offset: 0

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=LaurentSeriesRing(RationalField(), m); [0,0] cat Coefficients(R! x^3*(1-2*x^2+2*x^5) / ( (1+x)*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1))); // Vincenzo Librandi, Mar 21 2014
  • Maple
    g:=proc(n) option remember; local t1;
    t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1;
    t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1;
    t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    [seq(p(n+3)-p(n+1),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1;
    t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
    [0,seq(d(n-1)+p(n),n=2..32)]; #A238828
  • Mathematica
    CoefficientList[Series[x^2 (1 - 2 x^2 + 2 x^5)/((1 + x) (x^7 - 3 x^6 - x^5 - x^4 + 4 x^3 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
    LinearRecurrence[{2,3,-4,-3,2,4,2,-1},{0,0,1,2,5,12,28,70},40] (* Harvey P. Dale, Aug 29 2023 *)

Formula

G.f.: x^2*(1-2*x^2+2*x^5) / ( (1+x)*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1) ). - R. J. Mathar, Mar 20 2014, adapted to offset Jun 19 2021

Extensions

Offset corrected by N. J. A. Sloane, Jun 16 2021

A238823 a(n) = 3*a(n-1)-4*a(n-3)+a(n-4)+a(n-5)+3*a(n-6)-a(n-7) for n >= 8, with initial values as shown.

Original entry on oeis.org

2, 3, 6, 14, 34, 84, 208, 515, 1272, 3138, 7734, 19055, 46940, 115631, 284846, 701709, 1728662, 4258604, 10491218, 25845514, 63671404, 156856887, 386422704, 951966378, 2345203554, 5777493461, 14233063160, 35063663603, 86380598122, 212801715171, 524244692006, 1291495687122
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Comments

Number of horizontally convex polyiamonds with n triangles.

Examples

			The initial values of Zhuravlev's sequences are as follows.
(The columns give n, A238829, A238828, A238824 (twice), A238830, A238833, A238832, A238825, A238831, A238827, A238826, A238823, respectively):
n a b c d i j e p q r h g
1 1 0 1 0 0 0 0 0 0 0 1 2
2 1 0 0 1 0 1 0 0 0 0 2 3
3 2 1 1 1 0 0 1 0 0 0 4 6
4 5 2 1 3 1 2 1 1 0 0 9 14
5 12 5 3 7 2 2 4 2 0 0 22 34
6 31 12 7 17 6 7 9 5 1 0 53 84
7 77 28 17 43 15 16 23 11 3 1 131 208
8 192 70 43 105 36 40 58 27 8 2 323 515
9 474 169 105 262 91 101 141 64 21 6 798 1272
		

Crossrefs

Programs

  • Magma
    I:=[2,3,6,14,34,84,208,515]; [n le 8 select I[n] else 3*Self(n-1)-4*Self(n-3)+Self(n-4)+Self(n-5)+3*Self(n-6)-Self(n-7): n in [1..40]]; // Vincenzo Librandi, Mar 10 2014
  • Maple
    g:=proc(n) option remember; local t1;
    t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)];
  • Mathematica
    LinearRecurrence[{3, 0, -4, 1, 1, 3, -1}, {2, 3, 6, 14, 34, 84, 208}, 40] (* Vincenzo Librandi, Mar 10 2014 *)

Formula

G.f.: x*(2 - 3*x - 3*x^2 + 4*x^3 + 2*x^4 + x^5 - 3*x^6) / (1 - 3*x + 4*x^3 - x^4 - x^5 - 3*x^6 + x^7). [Bruno Berselli, Mar 10 2014]

A238829 a(n) = A238823(n) - A238826(n).

Original entry on oeis.org

1, 1, 2, 5, 12, 31, 77, 192, 474, 1170, 2881, 7097, 17477, 43050, 106043, 261235, 643552, 1585421, 3905750, 9621993, 23704161, 58396118, 143860974, 354406732, 873093707, 2150897733, 5298813853, 13053818630, 32158552201, 79223751853, 195170567014, 480809724213
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Magma
    I:=[1,1,2,5,12,31,77]; [n le 7 select I[n] else 3*Self(n-1)-4*Self(n-3)+Self(n-4)+Self(n-5)+3*Self(n-6)-Self(n-7): n in [1..35]]
  • Maple
    g:=proc(n) option remember; local t1;
    t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1;
    t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1;
    t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    h:=n->p(n+3)-p(n+1);
    [seq(h(n),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1;
    t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
    [0,seq(d(n-1)+p(n),n=2..32)]; #A238828
    a:=n->g(n)-h(n);
    [seq(a(n),n=1..32)]; #A238829
  • Mathematica
    CoefficientList[Series[(1 - x) (2 x^5 + x^4 + x^3 - 2 x^2 - x + 1)/(1 - 3 x + 4 x^3 - x^4 - x^5 - 3 x^6 + x^7), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
    LinearRecurrence[{3,0,-4,1,1,3,-1},{1,1,2,5,12,31,77},40] (* Harvey P. Dale, Jun 08 2018 *)

Formula

G.f.: -x*(x-1)*(2*x^5+x^4+x^3-2*x^2-x+1) / ( 1-3*x+4*x^3-x^4-x^5-3*x^6+x^7 ). - R. J. Mathar, Mar 20 2014

A238830 a(1)=a(2)=0; thereafter a(n) = a(n-2)+A238828(n-1)+A238827(n).

Original entry on oeis.org

0, 0, 0, 1, 2, 6, 15, 36, 91, 218, 544, 1325, 3281, 8055, 19880, 48930, 120610, 297055, 731922, 1802994, 4441915, 10942602, 26957739, 66410994, 163606230, 403049273, 992926975, 2446110587, 6026082552, 14845470456, 36572353012, 90097307929
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Maple
    g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1; t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
    b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
    a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
    i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
    if n <= 2 then t1[n] else
    i(n-2)+b(n-1)+r(n); fi; end proc;
    [seq(i(n),n=1..32)]; # A238830
  • Mathematica
    LinearRecurrence[{1,5,-1,-7,-1,6,6,1,-1},{0,0,0,1,2,6,15,36,91},40] (* Harvey P. Dale, Dec 29 2021 *)

Formula

G.f.: x^4*(1+x-x^2+x^5) / ( (x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)*(1+x)^2 ). - R. J. Mathar, Mar 20 2014

A238831 a(n) = 0 if n <= 2; thereafter a(n) = A238827(n) + A238830(n-2).

Original entry on oeis.org

0, 0, 0, 0, 0, 1, 3, 8, 21, 49, 124, 295, 735, 1789, 4428, 10874, 26836, 66062, 162838, 401081, 988225, 2434388, 5997403, 14774547, 36397880, 89667011, 220898267, 544190131, 1340632638, 3302695932, 8136311688, 20044096016, 49379354928, 121647818677, 299683787423, 738281805364, 1818783831517
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=LaurentSeriesRing(RationalField(), m); [0,0,0,0,0] cat Coefficients(R! -x^6*(x-1)*(2*x+1)*(x^2+x+1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1))); // Vincenzo Librandi, Mar 21 2014
  • Maple
    g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1; t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
    b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
    a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
    i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
    if n <= 2 then t1[n] else
    i(n-2)+b(n-1)+r(n); fi; end proc;
    [seq(i(n),n=1..32)]; # A238830
    q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;
    [seq(q(n),n=1..45)]; # A238831
  • Mathematica
    CoefficientList[Series[- x^5 (x - 1) (2 x + 1) (x^2 + x + 1)/((x + 1)^2 (x^7 - 3 x^6 - x^5 - x^4 + 4 x^3 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
  • PARI
    concat([0,0,0,0,0], Vec(-x^6*(x-1)*(2*x+1)*(x^2+x+1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014
    

Formula

G.f.: -x^6*(x-1)*(2*x+1)*(x^2+x+1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)). - Colin Barker, Mar 20 2014

A238832 a(1)=0; thereafter a(n) = A238824(n-1)+A238830(n-1).

Original entry on oeis.org

0, 0, 1, 1, 4, 9, 23, 58, 141, 353, 861, 2134, 5236, 12924, 31798, 78382, 193029, 475619, 1171600, 2886427, 7110657, 17517598, 43154977, 106314193, 261908415, 645221312, 1589525242, 3915853416, 9646844896, 23765351096, 58546797181, 144232146189, 355321086856, 875346302897, 2156447153427, 5312485264678
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Maple
    g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1; t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
    b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
    a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
    i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
    if n <= 2 then t1[n] else
    i(n-2)+b(n-1)+r(n); fi; end proc;
    [seq(i(n),n=1..32)]; # A238830
    q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;
    [seq(q(n),n=1..45)]; # A238831
    e:=n-> if n<=1 then 0 else d(n-1)+i(n-1); fi;
    [seq(e(n),n=1..45)]; # A238832
  • PARI
    concat([0,0], Vec(x^3*(2*x^5+2*x^4+x^3-2*x^2+1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014

Formula

G.f.: x^3*(2*x^5+2*x^4+x^3-2*x^2+1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)). - Colin Barker, Mar 20 2014

A238833 a(n) = n-1 for n <= 2; thereafter a(n) = A238824(n-2) + A238832(n-1).

Original entry on oeis.org

0, 1, 0, 2, 2, 7, 16, 40, 101, 246, 615, 1504, 3724, 9147, 22567, 55541, 136884, 337128, 830628, 2046145, 5040932, 12418320, 30593281, 75367352, 185670647, 457405836, 1126836394, 2776001211, 6838779857, 16847579205, 41504619640, 102248123906, 251891939366, 620544865783, 1528734638988, 3766092860744
Offset: 1

Views

Author

N. J. A. Sloane, Mar 08 2014

Keywords

Crossrefs

Programs

  • Magma
    m:=40; R:=LaurentSeriesRing(RationalField(), m); [0] cat Coefficients(R! -x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1))); // Vincenzo Librandi, Mar 21 2014
  • Maple
    g:=proc(n) option remember; local t1; t1:=[2,3,6,14,34,84,208,515];
    if n <= 7 then t1[n] else
    3*g(n-1)-4*g(n-3)+g(n-4)+g(n-5)+3*g(n-6)-g(n-7); fi; end proc;
    [seq(g(n),n=1..32)]; # A238823
    d:=proc(n) option remember; global g; local t1; t1:=[0,1];
    if n <= 2 then t1[n] else
    g(n-1)-2*d(n-1)-d(n-2); fi; end proc;
    [seq(d(n),n=1..32)]; # A238824
    p:=proc(n) option remember; global d; local t1; t1:=[0,0,0,1];
    if n <= 4 then t1[n] else
    p(n-2)+p(n-3)+2*(d(n-3)+d(n-4)); fi; end proc;
    [seq(p(n),n=1..32)]; # A238825
    h:=n->p(n+3)-p(n+1); [seq(h(n),n=1..32)]; #A238826
    r:=proc(n) option remember; global p; local t1; t1:=[0,0,0,0];
    if n <= 4 then t1[n] else
    r(n-2)+p(n-3); fi; end proc;
    [seq(r(n),n=1..32)]; # A238827
    b:=n-> if n=1 then 0 else d(n-1)+p(n); fi; [seq(b(n),n=1..32)]; #A238828
    a:=n->g(n)-h(n); [seq(a(n),n=1..32)]; #A238829
    i:=proc(n) option remember; global b,r; local t1; t1:=[0,0];
    if n <= 2 then t1[n] else
    i(n-2)+b(n-1)+r(n); fi; end proc;
    [seq(i(n),n=1..32)]; # A238830
    q:=n-> if n<=2 then 0 else r(n)+i(n-2); fi;
    [seq(q(n),n=1..45)]; # A238831
    e:=n-> if n<=1 then 0 else d(n-1)+i(n-1); fi;
    [seq(e(n),n=1..45)]; # A238832
    j:=n-> if n<=2 then n-1 else d(n-2)+e(n-1); fi;
    [seq(j(n),n=1..45)]; # A238833
  • Mathematica
    CoefficientList[Series[- x (x^8 + 2 x^7 + x^6 - 2 x^5 - 2 x^4 - x^3 + 3 x^2 + x - 1)/((x + 1)^2 (x^7 - 3 x^6 - x^5 - x^4 + 4 x^3 - 3 x + 1)), {x, 0, 40}], x] (* Vincenzo Librandi, Mar 21 2014 *)
    LinearRecurrence[{1,5,-1,-7,-1,6,6,1,-1},{0,1,0,2,2,7,16,40,101,246},40] (* Harvey P. Dale, Jul 23 2021 *)
  • PARI
    concat(0, Vec(-x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1)/((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)) + O(x^100))) \\ Colin Barker, Mar 20 2014
    

Formula

G.f.: -x^2*(x^8+2*x^7+x^6-2*x^5-2*x^4-x^3+3*x^2+x-1) / ((x+1)^2*(x^7-3*x^6-x^5-x^4+4*x^3-3*x+1)). - Colin Barker, Mar 20 2014
Showing 1-9 of 9 results.