cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A238966 The number of distinct primes in divisor lattice in canonical order.

Original entry on oeis.org

0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6, 1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 5, 6, 7, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 6, 7, 8, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 3, 4, 4, 5, 6, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9
Offset: 0

Views

Author

Sung-Hyuk Cha, Mar 07 2014

Keywords

Comments

After a(0) = 0, this appears to be the same as A128628. - Gus Wiseman, May 24 2020
Also the number of parts in the n-th integer partition in graded reverse-lexicographic order (A080577). - Gus Wiseman, May 24 2020

Examples

			Triangle T(n,k) begins:
  0;
  1;
  1, 2;
  1, 2, 3;
  1, 2, 2, 3, 4;
  1, 2, 2, 3, 3, 4, 5;
  1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6;
  ...
		

Crossrefs

Row sums are A006128.
Cf. A036043 in canonical order.
Row lengths are A000041.
The generalization to compositions is A000120.
The sum of the partition is A036042.
The lexicographic version (sum/lex) is A049085.
Partition lengths of A080577.
The partition has A115623 distinct elements.
The Heinz number of the partition is A129129.
The colexicographic version (sum/colex) is A193173.
The maximum of the partition is A331581.
Partitions in lexicographic order (sum/lex) are A193073.
Partitions in colexicographic order (sum/colex) are A211992.

Programs

  • Maple
    o:= proc(n) option remember; nops(ifactors(n)[2]) end:
    b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x->
        [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]):
    T:= n-> map(x-> o(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]:
    seq(T(n), n=0..9);  # Alois P. Heinz, Mar 26 2020
  • Mathematica
    revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]];
    Table[Length/@Sort[IntegerPartitions[n],revlexsort],{n,0,8}] (* Gus Wiseman, May 24 2020 *)
    b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[ Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]];
    P[n_] := P[n] = Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n];
    T[n_, k_] := PrimeNu[P[n][[k + 1]]];
    Table[T[n, k], {n, 0, 9}, {k, 0, Length[P[n]] - 1}] // Flatten (* Jean-François Alcover, Jan 03 2022, after Alois P. Heinz in A063008 *)
  • PARI
    Row(n)={apply(s->#s, vecsort([Vecrev(p) | p<-partitions(n)], , 4))}
    { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020

Formula

T(n,k) = A001221(A063008(n,k)). - Andrew Howroyd, Mar 25 2020
a(n) = A001222(A129129(n)). - Gus Wiseman, May 24 2020

Extensions

Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020