A238966 The number of distinct primes in divisor lattice in canonical order.
0, 1, 1, 2, 1, 2, 3, 1, 2, 2, 3, 4, 1, 2, 2, 3, 3, 4, 5, 1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6, 1, 2, 2, 3, 2, 3, 4, 3, 3, 4, 5, 4, 5, 6, 7, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 4, 4, 5, 6, 4, 5, 6, 7, 8, 1, 2, 2, 3, 2, 3, 4, 2, 3, 3, 4, 5, 3, 3, 4, 4, 5, 6, 3, 4, 5, 4, 5, 6, 7, 5, 6, 7, 8, 9
Offset: 0
Examples
Triangle T(n,k) begins: 0; 1; 1, 2; 1, 2, 3; 1, 2, 2, 3, 4; 1, 2, 2, 3, 3, 4, 5; 1, 2, 2, 3, 2, 3, 4, 3, 4, 5, 6; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arXiv:1405.5283 [math.NT], 2014.
- OEIS Wiki, Orderings of partitions
- Wikiversity, Lexicographic and colexicographic order
Crossrefs
Row sums are A006128.
Cf. A036043 in canonical order.
Row lengths are A000041.
The generalization to compositions is A000120.
The sum of the partition is A036042.
The lexicographic version (sum/lex) is A049085.
Partition lengths of A080577.
The partition has A115623 distinct elements.
The Heinz number of the partition is A129129.
The colexicographic version (sum/colex) is A193173.
The maximum of the partition is A331581.
Partitions in lexicographic order (sum/lex) are A193073.
Partitions in colexicographic order (sum/colex) are A211992.
Programs
-
Maple
o:= proc(n) option remember; nops(ifactors(n)[2]) end: b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x-> [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): T:= n-> map(x-> o(mul(ithprime(i)^x[i], i=1..nops(x))), b(n$2))[]: seq(T(n), n=0..9); # Alois P. Heinz, Mar 26 2020
-
Mathematica
revlexsort[f_,c_]:=OrderedQ[PadRight[{c,f}]]; Table[Length/@Sort[IntegerPartitions[n],revlexsort],{n,0,8}] (* Gus Wiseman, May 24 2020 *) b[n_, i_] := b[n, i] = If[n == 0 || i == 1, {Table[1, {n}]}, Join[ Prepend[#, i]& /@ b[n - i, Min[n - i, i]], b[n, i - 1]]]; P[n_] := P[n] = Product[Prime[i]^#[[i]], {i, 1, Length[#]}]& /@ b[n, n]; T[n_, k_] := PrimeNu[P[n][[k + 1]]]; Table[T[n, k], {n, 0, 9}, {k, 0, Length[P[n]] - 1}] // Flatten (* Jean-François Alcover, Jan 03 2022, after Alois P. Heinz in A063008 *)
-
PARI
Row(n)={apply(s->#s, vecsort([Vecrev(p) | p<-partitions(n)], , 4))} { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
Formula
Extensions
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020
Comments