A238971 The number of nodes at odd level in divisor lattice in canonical order.
0, 1, 1, 2, 2, 3, 4, 2, 4, 4, 6, 8, 3, 5, 6, 8, 9, 12, 16, 3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32, 4, 7, 9, 12, 10, 15, 20, 16, 18, 24, 32, 27, 36, 48, 64, 4, 8, 10, 14, 12, 18, 24, 12, 20, 22, 30, 40, 24, 32, 36, 48, 64, 40, 54, 72, 96, 128
Offset: 0
Examples
Triangle T(n,k) begins: 0; 1; 1, 2; 2, 3, 4; 2, 4, 4, 6, 8; 3, 5, 6, 8, 9, 12, 16; 3, 6, 7, 10, 8, 12, 16, 13, 18, 24, 32; ...
Links
- Andrew Howroyd, Table of n, a(n) for n = 0..2713 (rows 0..20)
- S.-H. Cha, E. G. DuCasse, and L. V. Quintas, Graph Invariants Based on the Divides Relation and Ordered by Prime Signatures, arxiv:1405.5283 [math.NT], 2014.
Programs
-
Maple
b:= (n, i)-> `if`(n=0 or i=1, [[1$n]], [map(x-> [i, x[]], b(n-i, min(n-i, i)))[], b(n, i-1)[]]): T:= n-> map(x-> floor(numtheory[tau](mul(ithprime(i) ^x[i], i=1..nops(x)))/2), b(n$2))[]: seq(T(n), n=0..9); # Alois P. Heinz, Mar 25 2020
-
PARI
b(n)={numdiv(n)\2} N(sig)={prod(k=1, #sig, prime(k)^sig[k])} Row(n)={apply(s->b(N(s)), vecsort([Vecrev(p) | p<-partitions(n)], , 4))} { for(n=0, 8, print(Row(n))) } \\ Andrew Howroyd, Mar 25 2020
Formula
Extensions
Offset changed and terms a(50) and beyond from Andrew Howroyd, Mar 25 2020