cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239005 Signed version of the Seidel triangle for the Euler numbers, read by rows.

Original entry on oeis.org

1, 0, 1, -1, -1, 0, 0, -1, -2, -2, 5, 5, 4, 2, 0, 0, 5, 10, 14, 16, 16, -61, -61, -56, -46, -32, -16, 0, 0, -61, -122, -178, -224, -256, -272, -272, 1385, 1385, 1324, 1202, 1024, 800, 544, 272, 0, 0, 1385, 2770, 4094, 5296, 6320, 7120, 7664, 7936, 7936
Offset: 0

Views

Author

Paul Curtz, Mar 08 2014

Keywords

Examples

			The triangle T(n,k) begins:
                      1
                    0   1
                 -1  -1   0
                0  -1  -2  -2
              5   5   4   2   0
             ...
The array read as a table, A(n,k) = T(n+k, k), starts:
     1,    1,    0,   -2,    0,   16,    0, -272,    0, ...
     0,   -1,   -2,    2,   16,  -16, -272,  272, ...
    -1,   -1,    4,   14,  -32, -256,  544, ...
     0,    5,   10,  -46, -224,  800, ...
     5,    5,  -56, -178, 1024, ...
     0,  -61, -122, 1202, ...
   -61,  -61, 1324, ...
     0, 1385, ...
  1385, ...
  ...
For the above table, we have A(n,k) = (-1)^(n+k)*A236935(n,k) for n, k >= 0. It has joint e.g.f. 2*exp(-x)/(1 + exp(-2*(x+y))). - _Petros Hadjicostas_, Feb 21 2021
		

Crossrefs

Unsigned version is A008280.

Programs

  • Mathematica
    t[0, 0] = 1; t[n_, m_] /; nJean-François Alcover, Dec 30 2014 *)
  • Maxima
    T(n,m):=sum(binomial(m,k)*euler(n-m+k),k,0,m); /* Vladimir Kruchinin, Apr 06 2015 */
    
  • PARI
    a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1) /* A122045 */
    T(n, k) = (-1)^n*sum(i=0, k, (-1)^i*binomial(k, i)*a(n-i)) /* Petros Hadjicostas, Feb 21 2021 */
    /* Second PARI program (same a(n) for A122045 as above) */
    T(n, k) = sum(i=0, k, binomial(k, i)*a(n-k+i)) /* Petros Hadjicostas, Feb 21 2021 */

Formula

a(n) = A057077(n)*A008280(n) by rows.
a(n) is the increasing antidiagonals of the difference table of A155585(n).
Central column of triangle: A099023(n).
Right main diagonal of triangle: A155585(n) (see A009006(n)).
Left main diagonal of triangle: A122045(n).
T(n,m) = Sum_{k=0..n} binomial(m,k)*Euler(n-m+k) for 0 <= m <= n. - Vladimir Kruchinin, Apr 06 2015 [The summation only needs to go from k=0 to k=m because of binomial(m,k).]
T(n,k) = (-1)^n*A236935(n-k,k) for 0 <= k <= n, where the latter is read as a square array. - Petros Hadjicostas, Feb 21 2021