A239293 Smallest composite c > n such that n^c == n (mod c).
4, 341, 6, 6, 10, 10, 14, 9, 12, 15, 15, 22, 21, 15, 21, 20, 34, 25, 38, 21, 28, 33, 33, 25, 28, 27, 39, 36, 35, 49, 49, 33, 44, 35, 45, 42, 45, 39, 57, 52, 82, 66, 77, 45, 55, 69, 65, 49, 56, 51, 65, 65, 65, 55, 63, 57, 65, 66, 87, 65, 91, 63, 93, 65, 70, 78, 85
Offset: 1
Keywords
Links
- T. D. Noe, Table of n, a(n) for n = 1..10000
- Gérard P. Michon, Weak pseudoprimes to base a
Programs
-
Haskell
import Math.NumberTheory.Moduli (powerMod) a239293 n = head [c | c <- a002808_list, powerMod n c c == n] -- Reinhard Zumkeller, Jul 11 2014
-
Maple
L:=NULL: for a to 100 do for n from a+1 while isprime(n) or not(a^n - a mod n =0) do od; L:=L,n od: L;
-
Mathematica
Table[k = n; While[k++; PrimeQ[k] || PowerMod[n, k, k] != n]; k, {n, 100}] (* T. D. Noe, Mar 17 2014 *)
-
PARI
a(n) = forcomposite(c=n+1, , if(Mod(n, c)^c==n, return(c))) \\ Felix Fröhlich, Aug 03 2018
Comments