cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A239325 a(n) = 6*n^2 + 8*n + 1.

Original entry on oeis.org

1, 15, 41, 79, 129, 191, 265, 351, 449, 559, 681, 815, 961, 1119, 1289, 1471, 1665, 1871, 2089, 2319, 2561, 2815, 3081, 3359, 3649, 3951, 4265, 4591, 4929, 5279, 5641, 6015, 6401, 6799, 7209, 7631, 8065, 8511, 8969, 9439, 9921, 10415, 10921, 11439, 11969
Offset: 0

Views

Author

Philippe Deléham, Mar 16 2014

Keywords

Comments

Binomial transform of 1, 14, 12, 0, 0, 0 (0 continued).
Sum_{n>=0} 1/a(n) = (Psi(0,(4+sqrt(10))/6) - Psi(0,(4-sqrt(10))/6))/(2*sqrt(10)) = 1.14373625509612753878..., where Psi(n,k) is the n^th derivative of the digamma function. - Bruno Berselli, Mar 16 2014

Examples

			a(0) = 1*1 = 1;
a(1) = 1*1 + 14*1 = 15;
a(2) = 1*1 + 14*2 + 12*1 = 41;
a(3) = 1*1 + 14*3 + 12*3 = 79;
a(4) = 1*1 + 14*4 + 12*6 = 129; etc.
		

Crossrefs

Programs

  • Mathematica
    Table[6 n^2 + 8 n + 1, {n, 0, 44}] (* or *)
    CoefficientList[Series[(1 + 12 x - x^2)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Oct 04 2016 *)
    LinearRecurrence[{3,-3,1},{1,15,41},50] (* Harvey P. Dale, May 11 2019 *)
  • PARI
    a(n)=6*n^2+8*n+1 \\ Charles R Greathouse IV, Jun 17 2017

Formula

G.f.: (1 + 12*x - x^2)/(1-x)^3.
a(0) = 1, a(1) = 15, a(2) = 41; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = C(n,0) + 14*C(n,1) + 12*C(n,2).
a(n) = (A069133(n+1) + A100536(n+1) - A000290(n))/2.
a(n) = A139267(n+1) - 1. - Yuriy Sibirmovsky, Oct 04 2016