A239325 a(n) = 6*n^2 + 8*n + 1.
1, 15, 41, 79, 129, 191, 265, 351, 449, 559, 681, 815, 961, 1119, 1289, 1471, 1665, 1871, 2089, 2319, 2561, 2815, 3081, 3359, 3649, 3951, 4265, 4591, 4929, 5279, 5641, 6015, 6401, 6799, 7209, 7631, 8065, 8511, 8969, 9439, 9921, 10415, 10921, 11439, 11969
Offset: 0
Examples
a(0) = 1*1 = 1; a(1) = 1*1 + 14*1 = 15; a(2) = 1*1 + 14*2 + 12*1 = 41; a(3) = 1*1 + 14*3 + 12*3 = 79; a(4) = 1*1 + 14*4 + 12*6 = 129; etc.
Links
- Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
Programs
-
Mathematica
Table[6 n^2 + 8 n + 1, {n, 0, 44}] (* or *) CoefficientList[Series[(1 + 12 x - x^2)/(1 - x)^3, {x, 0, 44}], x] (* Michael De Vlieger, Oct 04 2016 *) LinearRecurrence[{3,-3,1},{1,15,41},50] (* Harvey P. Dale, May 11 2019 *)
-
PARI
a(n)=6*n^2+8*n+1 \\ Charles R Greathouse IV, Jun 17 2017
Formula
G.f.: (1 + 12*x - x^2)/(1-x)^3.
a(0) = 1, a(1) = 15, a(2) = 41; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3).
a(n) = C(n,0) + 14*C(n,1) + 12*C(n,2).
a(n) = A139267(n+1) - 1. - Yuriy Sibirmovsky, Oct 04 2016
Comments