cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A239607 a(n) = (1-2*n^2)^2.

Original entry on oeis.org

1, 1, 49, 289, 961, 2401, 5041, 9409, 16129, 25921, 39601, 58081, 82369, 113569, 152881, 201601, 261121, 332929, 418609, 519841, 638401, 776161, 935089, 1117249, 1324801, 1560001, 1825201, 2122849, 2455489, 2825761, 3236401, 3690241, 4190209, 4739329
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Mathematica
    Table[(1-2*n^2)^2 , {n, 0, 43}]
  • PARI
    vector(100, n, round(sin(asin(n-1) - acos(n-1))^2)) \\ Colin Barker, May 24 2014
    
  • PARI
    a(n)=(1-2*n^2)^2 \\ Charles R Greathouse IV, Jun 04 2014

Formula

From Colin Barker, May 24 2014: (Start)
a(n) = sin(arcsin(n) - arccos(n))^2.
G.f.: -(x^4+44*x^3+54*x^2-4*x+1) / (x-1)^5. (End)
a(n) = A056220(n)^2. - Michel Marcus, May 27 2014
From Amiram Eldar, Mar 11 2022: (Start)
Sum_{n>=0} 1/a(n) = Pi^2*cosec(Pi/sqrt(2))^2/8 + (Pi/(4*sqrt(2))*cot(Pi/sqrt(2))) + 1/2.
Sum_{n>=0} (-1)^n/a(n) = Pi^2*cosec(Pi/sqrt(2))*cot(Pi/sqrt(2))/8 + (Pi/(4*sqrt(2)))*cosec(Pi/sqrt(2)) + 1/2. (End)
E.g.f.: exp(x)*(1 + 24*x^2 + 24*x^3 + 4*x^4). - Stefano Spezia, Feb 22 2025

A239608 Sin( arcsin(n)- 2*arccos(n) )^2.

Original entry on oeis.org

0, 1, 676, 9801, 59536, 235225, 715716, 1825201, 4096576, 8346321, 15760900, 27994681, 47279376, 76545001, 119552356, 181037025, 266864896, 384199201, 541679076, 749609641, 1020163600, 1367594361, 1808460676, 2361862801, 3049690176, 3896880625, 4931691076
Offset: 0

Views

Author

Keywords

Comments

The terms are integers.
This is assuming the "standard branch" of arcsin and arccos, where sin(arccos(n)) = cos(arcsin(n)) = sqrt(1-n^2). - Robert Israel, May 25 2014

Crossrefs

Programs

  • Magma
    [n^2*(3-4*n^2)^2 : n in [0..50]]; // Vincenzo Librandi, May 30 2014
  • Mathematica
    G[n_, a_, b_] := G[n, a, b] = Sin[a ArcSin[ n] + b ArcCos[n]]^2 // ComplexExpand // FullSimplify; Table[G[n, 1, -2], {n, 0, 43}]
    CoefficientList[Series[- x (x + 1) (x^4 + 668 x^3 + 4422 x^2 + 668 x + 1)/(x - 1)^7, {x, 0, 50}], x] (* Vincenzo Librandi, May 30 2014 *)
    Table[n^2*(3-4*n^2)^2,{n,0,30}] (* Harvey P. Dale, Aug 05 2016 *)
  • PARI
    vector(100, n, round(sin(asin(n-1) - 2*acos(n-1))^2)) \\ Colin Barker, May 24 2014
    

Formula

a(n) = n^2*(3-4*n^2)^2. G.f.: -x*(x+1)*(x^4+668*x^3+4422*x^2+668*x+1) / (x-1)^7. - Colin Barker, May 24 2014
a(n) = A144129(n)^2. - Robert Israel, May 25 2014

A239609 Sin(arcsin(n)- 3 arccos(n))^2.

Original entry on oeis.org

1, 1, 9409, 332929, 3690241, 23049601, 101626561, 354079489, 1040514049, 2687489281, 6272798401, 13493377921, 27138279169, 51591216769, 93489789121, 162571046401, 272735662081, 443365544449, 700932305089, 1080936581761, 1630220793601, 2409700487041
Offset: 0

Views

Author

Keywords

Comments

The terms are integers.
This is assuming the "standard branch" of arcsin and arccos, so that sin(arccos(n)) = cos(arcsin(n)) = sqrt(1-n^2). - Robert Israel, May 25 2014

Crossrefs

Programs

  • Mathematica
    G[n_, a_, b_] := G[n, a, b] = Sin[a ArcSin[ n] + b ArcCos[n]]^2 // ComplexExpand // FullSimplify; Table[G[n, 1, -3], {n, 0, 43}]
  • PARI
    vector(100, n, round(sin(asin(n-1) - 3*acos(n-1))^2)) \\ Colin Barker, May 24 2014

Formula

G.f.: -(x^8 +9400*x^7 +248284*x^6 +1032520*x^5 +1032646*x^4 +248200*x^3 +9436*x^2 -8*x +1) / (x -1)^9. - Colin Barker, May 24 2014
a(n) = A144130(n)^2. - Robert Israel, May 25 2014
Showing 1-3 of 3 results.