A239663 a(n) is the smallest number k such that the symmetric representation of sigma(k) has n parts.
1, 3, 9, 21, 63, 147, 357, 903, 2499, 6069, 13915, 29095, 59455, 142945, 320045, 643885, 1367465, 3287735, 6779135, 13853015, 30262595, 61773745
Offset: 1
Examples
------------------------------------------------------ n a(n) A239665 A266094(n) ------------------------------------------------------ 1 1 [1] 1 2 3 [2, 2] 4 3 9 [5, 3, 5] 13 4 21 [11, 5, 5, 11] 32 5 63 [32, 12, 16, 12, 32] 104 ... For n = 3 the symmetric representation of sigma(9) = 13 contains three parts [5, 3, 5] as shown below: . . _ _ _ _ _ 5 . |_ _ _ _ _| . |_ _ 3 . |_ | . |_|_ _ 5 . | | . | | . | | . | | . |_| .
Links
- Hartmut F. W. Hoft, Procedural implementation for extension values
- Omar E. Pol, Perspective view of the stepped pyramid (16 levels)
Crossrefs
Programs
-
Mathematica
(* a239663[] permits computation in intervals *) (* Function a237270[] is defined in A237270 *) (* variable "list" contains the first occurrences up to m *) a239663[list_,{m_, n_}]:=Module[{firsts=list, g=Length[list], i, p}, For[i=m, i<=n, i++, p=Length[a237270[i]]; If[p>g, AppendTo[firsts, i]; g=p]]; firsts] a239663[{1}, {1, 1000}] (* computes the first 8 values *) (* Hartmut F. W. Hoft, Jul 08 2014 *) (* support functions are defined in A341969, A341970 & A341971 *) a239663[n_, len_] := Module[{list=Table[0, len], i, v}, For[i=1, i<=n, i+=2, v=Count[a341969[i], 0]+1;If[list[[v]]==0, list[[v]]=i]]; list] a239663[62000000,22] (* Hartmut F. W. Hoft, Sep 22 2021 *)
Extensions
a(6)-a(8) from Michel Marcus, Mar 28 2014
a(9) from Michel Marcus, Mar 29 2014
a(10)-a(11) from Michel Marcus, Apr 02 2014
a(12) from Hartmut F. W. Hoft, Jul 08 2014
a(13)-a(18) from Hartmut F. W. Hoft, Dec 09 2014
a(19)-a(22) from Hartmut F. W. Hoft, Sep 22 2021
Comments