cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 13 results. Next

A239709 Primes of the form m = b^i + b^j - 1, where i > j > 0, b > 1.

Original entry on oeis.org

5, 11, 17, 19, 23, 29, 41, 47, 67, 71, 79, 83, 89, 107, 109, 131, 149, 181, 191, 239, 251, 257, 263, 269, 271, 349, 379, 383, 419, 461, 599, 701, 809, 811, 929, 971, 991, 1009, 1031, 1039, 1087, 1151, 1259, 1279, 1301, 1451, 1481, 1511, 1559, 1721, 1871, 1979, 2063, 2069, 2111, 2161, 2213, 2267, 2351, 2549, 2861, 2939, 2969, 3079, 3191, 3389
Offset: 1

Views

Author

Hieronymus Fischer, Mar 27 2014

Keywords

Comments

If m is a term, then there is a base b > 1 such that the base-b representation of m has digital sum = 1 + j*(b-1) == 1 (mod (b-1)).
The base b for which m = b^i + b^j - 1 is not uniquely determined. Example: 11 = 2^3+2^2-1 = 3^2 +3^1-1.
Numbers m which satisfy m = b^i + b^j - 1 with odd i and j and b == 2 (mod 3) are not terms. Example: 12189 = 23^3 + 23^1 - 1 is not a prime.

Examples

			a(1) = 5, since 5 = 2^2 + 2^1 - 1 is prime.
a(2) = 11, since 11 = 2^3 + 2^2 - 1 is prime.
a(6) = 29, since 29 = 3^3 + 3^1 - 1 is prime.
a(10^1) = 71.
a(10^2) = 13109.
a(10^3) = 9336079.
a(10^4) = 2569932329.
a(10^5) = 455578426189.
a(10^6) = 68543190483641.
		

Crossrefs

Programs

  • Smalltalk
    A239709
    "Answers the n-th term of A239709.
      Iterative calculation using A239709_termsLTn.
      Usage: n A239709
      Answer: a(n)"
      | n terms m |
      terms := SortedCollection new.
      n := self.
      m := (n prime // 2) squared.
      terms := m A239709_termsLTn.
      [terms size < n] whileTrue:
             [m := 2 * m.
             terms := m A239709_termsLTn].
      ^terms at: n
      "Remark: A last line of
      ^terms copyFrom: 1 to: n
      answers an array of the first n terms"
    [by_Hieronymus Fischer_, Apr 14 2014]
    -----------
    
  • Smalltalk
    A239709_termsLTn
      "Answers all the terms of A239709 which are < n.
      Direct processing by scanning the scanning the bases b in increasing order, up to b = sqrt(n), and calculating the numbers b^i + b^j - 1.
      Usage: n A239709_termsLTn
      Answer: #(5 11 17 19 23 ...) [terms < n]"
      | bmax p q n m terms a |
      terms := OrderedCollection new.
      n := self.
      bmax := n sqrtTruncated.
      2 to: bmax
         do:
             [:b |
             m := 1 + (n floorLog: b).
             p := b.
             2 to: m
                  by: 1
                  do:
                       [:i |
                       p := b * p.
                       q := b.
                       1 to: i - 1
                            by: 1
                            do:
                                [:j |
                                a := p + q - 1.
                                a < n ifTrue: [a isPrime ifTrue: [terms add: a]].
                                q := b * q]]].
      ^terms asSet asArray sorted
    [by_Hieronymus Fischer_, Apr 14 2014]
    -----------
    
  • Smalltalk
    A239709nTerms
      "Alternative version: Answers the first n terms of A239709. Direct calculation by scanning the numbers b^i + b^j - 1 in increasing order.
      Usage: n A239709
      Answer: a(n)"
      | a amax an b bmax k terms p q p_i q_j a_b amin bamin |
      terms := SortedCollection new.
      p_i := OrderedCollection new.
      q_j := OrderedCollection new.
      a_b := OrderedCollection new.
      p_i add: 1.
      q_j add: 1.
      a_b add: 1.
      k := 0.
      b := 2.
      bmax := b.
      p := b * b.
      q := b.
      a := p + q - 1.
      p_i add: p.
      q_j add: q.
      a_b add: a.
      amax := 2 * (b + 1) + a.
      an := 0.
      [(k < self and: [a < amax]) or: [a < an]] whileTrue:
             [[(k < self and: [a < amax]) or: [a < an]] whileTrue:
                       [[q < p and: [(k < self and: [a < amax]) or: [a < an]]] whileTrue:
                                [a isPrime2
                                     ifTrue:
                                          [(terms includes: a)
                                              ifFalse:
                                                   [k := k + 1.
                                                   terms add: a.
                                                   k >= self ifTrue: [an := terms at: self]]].
                                q := b * q.
                                a := p + q - 1].
                       p = q
                            ifTrue:
                                [p := b * p.
                                q := b.
                                a := p + q - 1].
                       p_i at: b put: p.
                       q_j at: b put: q.
                       a_b at: b put: a].
             amin := a.
             2 to: b - 1
                  do:
                       [:bb |
                       (a_b at: bb) < amin
                            ifTrue:
                                [amin := a_b at: bb.
                                bamin := bb]].
             b + 1 to: bmax
                  do:
                       [:bb |
                       (a_b at: bb) < amin
                            ifTrue:
                                [amin := a_b at: bb.
                                bamin := bb]].
             amin < (a min: amax)
                  ifTrue:
                       [b := bamin.
                       p := p_i at: b.
                       q := q_j at: b.
                       a := a_b at: b]
                  ifFalse:
                       [bmax := bmax + 1.
                       b := bmax.
                       p := b * b.
                       q := b.
                       a := p + q - 1.
                       p_i add: p.
                       q_j add: q.
                       a_b add: a.
                       amax := 2 * (b + 1) + a max: amax]].
      ^terms copyFrom: 1 to: self
    [by_Hieronymus Fischer_, Apr 20 2014]

A239720 Primes of the form m = 10^i + 10^j - 1, where i > j >= 0.

Original entry on oeis.org

109, 1009, 10009, 10099, 100999, 1000099, 1000999, 1000000009, 1000009999, 1000099999, 1009999999, 10000000999, 10000099999, 10999999999, 100999999999, 1000000009999, 1000000999999, 1099999999999, 10000000000099, 10009999999999
Offset: 1

Views

Author

Hieronymus Fischer, Apr 14 2014

Keywords

Comments

Numbers with the first digit 1 followed by at least one 0-digit and ending with a number > 0 of trailing 9-digits.
The digital sum of a term 10^i + 10^j - 1 is = 1 + 9*j == 1 (mod 9).
Numbers m that satisfy m = 10^i + 10^j + 1 are never primes, since the digital sum of m is 3, and thus, m is divisible by 3.

Examples

			a(1) = 109, since 109 = 10^2 + 10^1 - 1 is prime.
a(2) = 1009, since 1009 = 10^3 + 10^1 - 1 is prime.
		

Programs

  • Mathematica
    Select[Flatten[Table[10^i+10^j-1,{i,0,20},{j,0,i-1}]],PrimeQ] (* Harvey P. Dale, Jan 30 2017 *)
  • Smalltalk
    A239720
      "Answer the n-th term of A239720.
      Usage: n A239720
      Answer: a(n)"
      | a b i j k p q terms |
      terms := OrderedCollection new.
      k := 0.
      b := 10.
      p := b.
      i := 1.
      [k < self] whileTrue:
             [j := 0.
             q := 1.
             [j < i and: [k < self]] whileTrue:
                       [a := p + q - 1.
                       a isPrime
                            ifTrue:
                                [k := k + 1.
                                terms add: a].
                       q := b * q.
                       j := j + 1].
             i := i + 1.
             p := b * p].
      ^terms at: self
    --------------------
    
  • Smalltalk
    A239720
      "Version2: Answer an array of the first n terms of A239720.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
      Usage: n A239720
      Answer: #(109 1009 ... ) [a(1) ... a(n)]"
      ^self primesWhichAreDistinctPowersOf: 10 withOffset: -1

A239710 Primes of the form m = b^i + b^j + 1, where i > j > 0, b > 1.

Original entry on oeis.org

7, 11, 13, 19, 31, 37, 41, 43, 67, 73, 97, 109, 131, 137, 151, 157, 193, 211, 223, 241, 271, 307, 421, 463, 521, 577, 601, 631, 641, 733, 739, 751, 757, 769, 811, 1033, 1123, 1153, 1303, 1453, 1483, 1723, 1741, 1873, 2053, 2081, 2113, 2269, 2551, 2917, 2971, 3251, 3307, 3391, 3541, 3907, 4099
Offset: 1

Views

Author

Hieronymus Fischer, Mar 27 2014 and May 04 2014

Keywords

Comments

If m is a term, then there is a base b > 1 such that the base-b representation of m has digital sum = 3.
The base b for which m = b^i + b^j + 1 is not uniquely determined. Example: 13 = 2^3+2^2+1 = 3^2 +3^1+1.
Numbers m that satisfy m = b^i + b^j + 1 and b == 1 (mod 3) are not terms.

Examples

			a(1) = 7, since 7 = 2^2 + 2^1 + 1 is prime.
a(2) = 11, since 11 = 2^3 + 2^1 + 1 is prime.
a(5) = 31, since 31 = 3^3 + 3^1 + 1 is prime.
a(10) = 73.
a(100) = 24181.
a(10^3) = 23160157.
a(10^4) = 7039461703.
a(10^5) = 1226630453623.
a(10^6) = 182489744292253.
		

Crossrefs

Programs

  • Smalltalk
    A239710
      "Answers the n-th term of A239710.
    Usage: n A239710
    Answer: a(n)"
      ^(self primesWhichAreDistinctPowersWithOffset: 1) at: self
    -----------
    
  • Smalltalk
    primesWhichAreDistinctPowersWithOffset: d
      "Answers an array which hold the first n primes of the form b^i + b^j + d, i>j>0, where n is the receiver. Iterative calculation, b > 1.
      Usage: n primesWhichAreDistinctPowersWithOffset: d
    Answer: all terms < n"
      | n terms m |
      terms := OrderedCollection new.
      n := self.
      m := n squared * (n integerCeilLog: 2) * 2.
      terms := m primesLTnWhichAreDistinctPowersWithOffset: d.
      [terms size < n] whileTrue:
        [m := 2 * m.
        terms := m primesLTnWhichAreDistinctPowersWithOffset: d].
      ^(terms copyFrom: 1 to: n) asArray
    -----------
    
  • Smalltalk
    primesLTnWhichAreDistinctPowersWithOffset: d
      "Answers an array which hold the primes < n of the form b^i + b^j + d, i>j>0, where n is the receiver, b > 1.
      Uses floorDistinctPowersWithOffset: d from A242100"
      ^(self floorDistinctPowersWithOffset: d) select: [:i | i isPrime]

A239719 Primes of the form m = 9^i + 9^j - 1, where i > j >= 0.

Original entry on oeis.org

89, 809, 6569, 65609, 531521, 538001, 590489, 4782977, 4783697, 47829689, 3486784409, 3491567369, 3529831121, 31768480097, 34867844009, 282430067921, 285916320881, 313810596089, 2541865834889, 22877179875449, 25418658283289
Offset: 1

Views

Author

Hieronymus Fischer, Apr 14 2014

Keywords

Comments

The base-9 representation of a term 9^i + 9^j - 1 has base-9 digital sum = 1 + 8*j == 1 (mod 8).
In base-9 representation the first terms are 108, 1088, 10008, 108888, 1000088, 1008888, 1088888, 10000008, 10000888, 108888888, 10000000008, 10008888888, 10088888888, 100888888888, ...

Examples

			a(1) = 89, since 89 = 9^2 + 9^1 - 1 is prime.
a(2) = 809, since 809 = 9^3 + 9^2 - 1 is prime.
		

Programs

  • Mathematica
    Select[Flatten[Table[9^i+9^j-1,{i,0,20},{j,0,i-1}]],PrimeQ] (* Harvey P. Dale, Jun 02 2023 *)
  • Smalltalk
    A239719
      "Answer an array of the first n terms of A239719.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
      Usage: n A239719
      Answer: #(89 809 ... ) [a(1) ... a(n)]"
      ^self primesWhichAreDistinctPowersOf: 9 withOffset: -1

A239711 Twin primes of the form m = b^i + b^j +- 1, where i > j > 0, b > 1.

Original entry on oeis.org

5, 7, 11, 13, 17, 19, 29, 31, 41, 43, 71, 73, 107, 109, 149, 151, 191, 193, 239, 241, 269, 271, 419, 421, 461, 463, 599, 601, 809, 811, 1031, 1033, 1151, 1153, 1301, 1303, 1451, 1453, 1481, 1483, 1721, 1723, 1871, 1873, 2111, 2113, 2267, 2269, 2549, 2551, 2969, 2971, 3389, 3391, 3539, 3541
Offset: 1

Views

Author

Hieronymus Fischer, Mar 27 2014 and May 04 2014

Keywords

Comments

(a(2k-1), a(2k)), k > 0, form pairs of twin primes.
Numbers m that satisfy m = b^i + b^j + 1 and b == 1 (mod 3) and those that satisfy m = b^i + b^j - 1 with odd i and j and b == 2 (mod 3) are never terms, since they are divisible by 3. It follows that no numbers 4^i + 4^j +- 1, or 7^i + 7^j +- 1, or 10^i + 10^j +- 1, ... can be terms. Also, no numbers 5^(2m-1) + 5^(2k-1) +- 1, or 8^(2m-1) + 8^(2k-1) +- 1, or 11^(2m-1) + 11^(2k-1) +- 1, ... with m > k > 0, can be terms.
Example 1: 10^6 + 10^4 + 1 = 1010001 is not a term, since 10 == 1 (mod 3); certainly, 1010001 = 3*336667.
Example 2: 8^9 + 8^7 - 1 = 136314879 is not a term, since 8 == 2 (mod 3) and i, j odd; certainly 136314879 = 3*45438293.

Examples

			a(1) = 5, since 5 = 2^2 + 2^1 - 1 is prime.
a(2) = 7, since 7 = 2^3 + 2^1 + 1 is prime.
a(7) = 29, since 29 = 3^3 + 3^1 - 1 is prime.
a(8) = 31, since 31 = 3^3 + 3^1 + 1 is prime.
a(9) = 41.
a(10) = 43.
a(99) = 43889.
a(100) = 43891.
a(999) = 233524241.
a(1000) = 233524243.
a(9999) = 110211052379.
a(10000) = 110211052381.
a(99999) = 27208914574871.
a(100000) = 27208914574873.
a(199999) = 136140088764371.
a(200000) = 136140088764373.
[the last two terms form the 100000th twin prime pair of the form b^i + b^j +-1]
		

Crossrefs

A239713 Primes of the form m = 3^i + 3^j - 1, where i > j >= 0.

Original entry on oeis.org

3, 11, 29, 83, 89, 107, 251, 269, 809, 971, 2213, 2267, 6563, 6569, 6803, 8747, 19709, 19763, 20411, 59051, 65609, 177173, 183707, 531521, 538001, 590489, 1594331, 1594403, 1595051, 1596509, 4782971, 4782977, 4783697, 14348909, 14349149, 14526053, 14880347
Offset: 1

Views

Author

Hieronymus Fischer, Mar 28 2014

Keywords

Comments

The base-3 representation of a term 3^i + 3^j - 1 has base-3 digital sum = 1 + 2*j == 1 (mod 2).
In base-3 representation the first terms are 10, 102, 1002, 10002, 10022, 10222, 100022, 100222, 1002222, 1022222, 10000222, 10002222, 100000002, 100000022, 100022222, 102222222, 1000000222, 1000002222, 1000222222, 10000000002, 10022222222, 100000000222, 100022222222, ...

Examples

			a(1) = 3, since 3 = 3^1 + 3^0 - 1 is prime.
a(5) = 89, since 89 = 3^4 + 3^2 - 1 is prime.
		

Crossrefs

Cf. A018900, A239709, A239712 (base 2), A239714 (base 4), A239715 (base 5), A239716 (base 6), A239717 (base 7), A239718 (base 8), A239719 (base 9), A239720 (base 10).

Programs

  • Maple
    select(isprime, [seq(seq(3^i+3^j-1, j=0..i-1), i=1..25)])[];  # Alois P. Heinz, Dec 22 2024
  • Mathematica
    Select[Flatten[Table[3^i + 3^j - 1, {i, 1, 25}, {j, 0, i - 1}]], PrimeQ] (* Jean-François Alcover, Mar 17 2025, after Alois P. Heinz *)
  • Smalltalk
    A239713
    "Answers the n-th term of A239713.
      Usage: n A239713
      Answer: a(n)"
      | a b i j k p q terms |
      terms := OrderedCollection new.
      k := 0.
      b := 3.
      p := b.
      i := 1.
      [k < self] whileTrue:
             [j := 0.
             q := 1.
             [j < i and: [k < self]] whileTrue:
                       [a := p + q - 1.
                       a isPrime
                            ifTrue:
                                [k := k + 1.
                                terms add: a].
                       q := b * q.
                       j := j + 1].
             i := i + 1.
             p := b * p].
         ^terms at: self
    [by Hieronymus Fischer, Apr 14 2014]
    --------------------
    
  • Smalltalk
    A239713
    "Version 2: Answers the n-th term of A239713.
      Uses distinctPowersOf: b from A018900
      Usage: n A239713
      Answer: a(n)”
      | a k n terms |
      terms := OrderedCollection new.
      n := 1.
      k := 0.
      [k < self] whileTrue:
             [(a:= (n distinctPowersOf: 3) - 1)
                  isPrime ifTrue:    [k := k + 1.
                                     terms add: a].
                  n := n + 1].
      ^terms at: self
    [by Hieronymus Fischer, Apr 22 2014]
    -----------
    
  • Smalltalk
    A239713
      "Version 3: Answer an array of the first n terms of A239713.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
      Usage: n A239713
      Answer: #(3 11 29 ... ) [a(1) ... a(n)]”
      ^self primesWhichAreDistinctPowersOf: 3 withOffset: -1
    [by Hieronymus Fischer, Apr 22 2014]

A239714 Primes of the form m = 4^i + 4^j - 1, where i > j >= 0.

Original entry on oeis.org

19, 67, 79, 271, 1039, 1087, 1279, 4099, 4111, 4159, 5119, 16447, 20479, 65539, 65551, 65599, 81919, 262147, 262399, 263167, 266239, 1049599, 1114111, 1310719, 4194319, 4194559, 4195327, 16842751, 17825791, 67108879, 268435459, 268435711, 272629759, 1073741827, 1073741839, 1073758207
Offset: 1

Views

Author

Hieronymus Fischer, Apr 14 2014

Keywords

Comments

The base-4 representation of a term 4^i + 4^j - 1 has base-4 digital sum = 1 + 3*j == 1 (mod 3).
In base-4 representation the first terms are 103, 1003, 1033, 10033, 100033, 100333, 103333, 1000003, 1000033, 1000333, 1033333, 10000333, 10333333, 100000003, 100000033, 100000333, 103333333, 1000000003, 1000003333, 1000033333, ...
Numbers m which satisfy m = 4^i + 4^j + 1 are never primes, since the base-4 digital sum of m is 3, and thus, m is divisible by 3.

Examples

			a(1) = 19, since 19 = 4^2 + 4^1 - 1 is prime.
a(4) = 271, since 271 = 4^4 + 4^2 - 1 is prime.
		

Crossrefs

Cf. A234310.

Programs

  • Smalltalk
    A239714
      "Answer an array of the first n terms of A239714.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
      Usage: n A239714
      Answer: #(19 67 79 ... ) [a(1) ... a(n)]"
      ^self primesWhichAreDistinctPowersOf: 4 withOffset: -1

A239715 Primes of the form m = 5^i + 5^j - 1, where i > j >= 0.

Original entry on oeis.org

5, 29, 149, 15629, 15649, 15749, 16249, 18749, 391249, 393749, 1968749, 9765629, 9781249, 244140749, 244218749, 292968749, 30517968749, 152587890649, 152587891249, 152587893749, 152597656249, 152636718749, 3814697281249, 3814697656249, 19073486328749, 95367441406249
Offset: 1

Views

Author

Hieronymus Fischer, Apr 14 2014

Keywords

Comments

The base-5 representation of a term 5^i + 5^j - 1 has base-5 digital sum = 1 + 4*j == 1 (mod 4).
In base-5 representation the first terms are 10, 104, 1044, 1000004, 1000044, 1000444, 1004444, 1044444, 100004444, 100044444, 1000444444, 10000000004, 10000444444, ...
All terms after the first have the last digit 9, since 5^i == 5 (mod 10), and thus 5^i + 5^j == 0 (mod 10).
All terms which have i > j > 1 end with the last 2 digits …49, since 5^k == 25 (mod 100) for k > 1, and thus 5^i + 5^j == 50 (mod 100).
All terms which have i > j > 1 end with the last 3 digits ...249, ...649, or ...749, since 5^k == 125 (mod 1000) or 5^k == 625 (mod 1000) for k > 2, and thus 5^i + 5^j == 250 (mod 1000), or 5^i + 5^j == 650 (mod 1000), or 5^i + 5^j == 750 (mod 1000).
Numbers m = 5^i + 5^j - 1 with odd i and j are not terms. Example: 78249 = 5^7 + 5^3 - 1 = 3*26083.

Examples

			a(1) = 5, since 5 = 5^1 + 5^0 - 1 is prime.
a(3) = 149, since 149 = 5^3 + 5^2 - 1 is prime.
		

Programs

  • Smalltalk
    A239715
      "Answers an array of the first n terms of A239715.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
      Usage: n A239715
      Answer: #(5 29 ... ) [a(1) ... a(n)]"
      ^self primesWhichAreDistinctPowersOf: 5 withOffset: -1

A239716 Primes of the form m = 6^i + 6^j - 1, where i > j >= 0.

Original entry on oeis.org

41, 251, 1301, 1511, 46691, 47951, 279941, 1679831, 10077911, 10124351, 60466181, 60466391, 60473951, 362797091, 362797271, 362843711, 2176782371, 2237248511, 13060694051, 13121160191, 78364164101, 78364164311, 78364171871
Offset: 1

Views

Author

Hieronymus Fischer, Apr 14 2014

Keywords

Comments

The base-6 representation of a term 6^i + 6^j - 1 has base-6 digital sum = 1 + 5*j == 1 (mod 5).
In base-6 representation the first terms are 105, 1055, 10005, 10555, 1000055, 1005555, 10000005, 100000555, 1000000555, 1000555555, 10000000005, 10000000555,

Examples

			a(1) = 41, since 41 = 6^2 + 6^1 - 1 is prime.
a(2) = 251, since 251 = 6^3 + 6^2 - 1 is prime.
		

Programs

  • Mathematica
    Select[Union[Flatten[Table[6^i+6^j-1,{i,20},{j,0,i-1}]]],PrimeQ] (* Harvey P. Dale, Oct 05 2024 *)
  • Smalltalk
    A239716
      "Answers an array of the first n terms of A239716.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
      Usage: n A239716
      Answer: #(41 241 ... ) [a(1) ... a(n)]"
      ^self primesWhichAreDistinctPowersOf: 6 withOffset: -1

A239717 Primes of the form m = 7^i + 7^j - 1, where i > j >= 0.

Original entry on oeis.org

7, 349, 19207, 117991, 120049, 823591, 5765143, 5882449, 6588343, 40353949, 282475591, 2017680349, 2259801991, 13841289601, 14123762449, 96894775207, 96929364013, 678223072897, 678223075249, 4747567274743, 5425784582791
Offset: 1

Views

Author

Hieronymus Fischer, Apr 14 2014

Keywords

Comments

The base-7 representation of a term 7^i + 7^j - 1 has base-7 digital sum = 1 + 6*j == 1 (mod 6).
Numbers m that satisfy m = 7^i + 7^j + 1 are never primes, since the base-7 digital sum of m is 3, and thus, m is divisible by 3.

Examples

			a(1) = 7, since 7 = 7^1 + 7^0 - 1 is prime.
a(2) = 349, since 349 = 7^3 + 7^1 - 1 is prime.
		

Programs

  • Mathematica
    Select[Flatten[Table[7^x+7^y-1,{x,0,20},{y,0,x-1}]],PrimeQ] (* Harvey P. Dale, Aug 13 2023 *)
  • Smalltalk
    A239717
      "Answers an array of the first n terms of A239717.
      Uses method primesWhichAreDistinctPowersOf: b withOffset: d from A239712.
      Usage: n A239717
      Answer: #(7 349 ... ) [a(1) ... a(n)]"
      ^self primesWhichAreDistinctPowersOf: 7 withOffset: -1
Showing 1-10 of 13 results. Next