A239767 Degrees of polynomial on the fermionic side of the finite generalization of identity 46 from Slater's List.
0, 1, 6, 11, 22, 31, 48, 61, 84, 101, 130, 151, 186, 211, 252, 281, 328, 361, 414, 451, 510, 551, 616, 661, 732, 781, 858, 911, 994, 1051, 1140, 1201, 1296, 1361, 1462, 1531, 1638, 1711, 1824, 1901, 2020, 2101, 2226, 2311, 2442, 2531, 2668, 2761, 2904, 3001
Offset: 0
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..1000
- George E. Andrews, The hard-hexagon model and Rogers-Ramanujan type identities, Proc. Nat. Acad. Sci. U.S.A., 78(1981), 5290-5292.
- L. J. Slater, Further Identities of the Rogers-Ramanujan Type, Proc. London Math. Soc., 54(1952), 147-167.
- Index entries for linear recurrences with constant coefficients, signature (1,2,-2,-1,1).
Programs
-
Magma
[(1/8)*(10*n^2+2*(1+(-1)^n)*n-(1-(-1)^n)): n in [0..50]]; // Vincenzo Librandi, Mar 29 2014
-
Maple
A239767:=n->(10*n^2 + 2*n*(1+(-1)^n) - (1-(-1)^n))/8; seq(A239767(n), n=0..100); # Wesley Ivan Hurt, Mar 27 2014
-
Mathematica
Table[(10 n^2 + 2 n (1 + (-1)^n) - (1 - (-1)^n))/8, {n, 0, 100}] (* Wesley Ivan Hurt, Mar 27 2014 *) CoefficientList[Series[- x (x^3 + 3 x^2 + 5 x + 1)/((x - 1)^3 (x + 1)^2), {x, 0, 50}], x] (* Vincenzo Librandi, Mar 29 2014 *)
-
PARI
concat(0, Vec(-x*(x^3+3*x^2+5*x+1)/((x-1)^3*(x+1)^2) + O(x^100))) \\ Colin Barker, Mar 26 2014
Formula
a(n) = (1/8)*(10*n^2 + 2*(1+(-1)^n)*n - (1-(-1)^n)).
From Colin Barker, Mar 26 2014: (Start)
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5).
G.f.: -x*(x^3+3*x^2+5*x+1) / ((x-1)^3*(x+1)^2). (End)
Extensions
More terms from Colin Barker, Mar 26 2014
Comments