cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240085 Number of compositions of n in which no part is unique (every part appears at least twice).

Original entry on oeis.org

1, 0, 1, 1, 2, 1, 9, 11, 34, 53, 108, 169, 400, 680, 1530, 2984, 6362, 12498, 25766, 50093, 102126, 199309, 400288, 788227, 1581584, 3135117, 6286310, 12532861, 25121292, 50184582, 100627207, 201208477, 403170900, 806534560, 1615151111, 3231224804, 6467909442
Offset: 0

Views

Author

Geoffrey Critzer, Mar 31 2014

Keywords

Examples

			a(6) = 9 because we have: 3+3, 2+2+2, 2+2+1+1, 2+1+2+1, 2+1+1+2, 1+2+2+1, 1+2+1+2, 1+1+2+2, 1+1+1+1+1+1.
		

References

  • S. Heubach and T. Mansour, Combinatorics of Compositions and Words, Chapman and Hall, 2009.

Crossrefs

Cf. A007690.

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, t!, `if`(i<1, 0,
          b(n, i-1, t) +add(b(n-i*j, i-1, t+j)/j!, j=2..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..40);  # Alois P. Heinz, Mar 31 2014
  • Mathematica
    Table[Length[Level[Map[Permutations,Select[IntegerPartitions[n], Apply[And,Table[Count[#,#[[i]]]>1,{i,1,Length[#]}]]&]],{2}]],{n,0,20}]
    (* Second program: *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, t!, If[i < 1, 0, b[n, i - 1, t] + Sum[b[n - i*j, i - 1, t + j]/j!, {j, 2, n/i}]]]; a[n_] := b[n, n, 0]; Table[a[n], {n, 0, 40}] (* Jean-François Alcover, Aug 29 2016, after Alois P. Heinz *)

Formula

G.f.: 1 + Sum_{m>1} C(m,x)/(1-x^m) where C(m,x) = x^m + Sum_{i=2..m-2} m! * x^m * C(m-i,x)/(i! * (m-i)! * (1 - x^(m-i))). - John Tyler Rascoe, Jan 09 2025

Extensions

More terms from Alois P. Heinz, Mar 31 2014