cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A242517 List of primes p for which p^n - 2 is prime for n = 1, 3, and 5.

Original entry on oeis.org

31, 619, 2791, 4801, 15331, 33829, 40129, 63421, 69151, 98731, 127291, 142789, 143569, 149971, 151849, 176599, 184969, 201829, 210601, 225289, 231841, 243589, 250951, 271279, 273271, 277549, 280591, 392269, 405439, 441799, 472711, 510709, 530599, 568441, 578689
Offset: 1

Views

Author

Abhiram R Devesh, May 17 2014

Keywords

Examples

			31 is in the sequence because
p = 31 (prime),
p - 2 = 29 (prime),
p^3 - 2 = 29789 (prime), and
p^5 - 2 = 28629149 (prime).
		

Crossrefs

Intersection of A006512, A178251 and A154834, hence, intersection of A240126 and A154834.
Cf. A001359.

Programs

  • Mathematica
    Select[Range[600000], PrimeQ[#] && AllTrue[#^{1, 3, 5} - 2, PrimeQ] &] (* Amiram Eldar, Apr 06 2020 *)
  • PARI
    isok(p) = isprime(p) && isprime(p-2) && isprime(p^3-2) && isprime(p^5-2); \\ Michel Marcus, Apr 06 2020
    
  • PARI
    list(lim)=my(v=List(),p=29); forprime(q=31,lim, if(q-p==2 && isprime(q^3-2) && isprime(q^5-2), listput(v,q)); p=q); Vec(v) \\ Charles R Greathouse IV, Apr 06 2020
  • Python
    import sympy
    n=2
    while n>1:
        n1=n-2
        n2=((n**3)-2)
        n3=((n**5)-2)
        ##Check if n1, n2 and n3 are also primes.
        if sympy.ntheory.isprime(n1)== True and sympy.ntheory.isprime(n2)== True and sympy.ntheory.isprime(n3)== True:
            print(n, " , " , n1, " , ", n2, " , ", n3)
        n=sympy.ntheory.nextprime(n)
    

A242518 Primes p for which p^n - 2 is prime for n = 1, 3, 5 and 7.

Original entry on oeis.org

201829, 2739721, 6108679, 7883329, 9260131, 9309721, 9917389, 14488249, 15386491, 15876481, 16685299, 16967191, 18145279, 20566969, 20869129, 21150991, 23194909, 25510189, 28406929, 34669909, 35039311, 36795169, 37912141, 39083521, 39805639
Offset: 1

Views

Author

Abhiram R Devesh, May 17 2014

Keywords

Comments

This is a subsequence of A242517.

Examples

			p = 201829  (prime)
p - 2 = 201827 (prime)
p^3 - 2 = 8221493263045787 (prime)
p^5 - 2 = 334902077869420623790640147 (prime)
p^7 - 2 = 13642217803107967058507788317851080907 (prime)
		

Crossrefs

Programs

  • Mathematica
    Select[Prime[Range[25*10^5]],AllTrue[#^{1,3,5,7}-2,PrimeQ]&] (* The program uses the AllTrue function from Mathematica version 10 *) (* Harvey P. Dale, Dec 26 2015 *)
  • Python
    import sympy
    n=2
    while n>1:
        n1=n-2
        n2=((n**3)-2)
        n3=((n**5)-2)
        n4=((n**7)-2)
        ##.Check if n1, n2, n3 and n4 are also primes
        if sympy.ntheory.isprime(n1)== True and sympy.ntheory.isprime(n2)== True and sympy.ntheory.isprime(n3)== True and sympy.ntheory.isprime(n4)== True:
            print(n, " , " , n1, " , ", n2, " , ", n3, " , ", n4)
        n=sympy.ntheory.nextprime(n)

A243269 Smallest prime p such that p^k - 2 is prime for all odd exponents k from 1 up to 2*n-1 (inclusive).

Original entry on oeis.org

5, 19, 31, 201829, 131681731, 954667531, 8998333416049
Offset: 1

Views

Author

Abhiram R Devesh, Jun 02 2014

Keywords

Comments

The first 4 entries of this sequence are the first entry of the following sequences:
A006512 : Primes p such that p - 2 is also prime.
A240126 : Primes p such that p - 2 and p^3 - 2 are also prime.
A242517 : Primes p such that p - 2, p^3 - 2 and p^5 - 2 are primes.
A242518 : Primes p such that p - 2, p^3 - 2, p^5 - 2 and p^7 - 2 are primes.

Examples

			For n = 1, p = 5, p - 2 = 3 is prime.
For n = 2, p = 19, p - 2 = 17 and p^3 - 2 = 6857 are primes.
For n = 3, p = 31, p - 2 = 29, p^3 - 2 = 29789, and p^5 - 2 = 28629149 are primes.
		

Crossrefs

Programs

  • Python
    import sympy
    ## isp_list returns an array of true/false for prime number test for a
    ## list of numbers
    def isp_list(ls):
        pt=[]
        for a in ls:
            if sympy.ntheory.isprime(a)==True:
                pt.append(True)
        return(pt)
    co=1
    while co < 7:
        al=0
        n=2
        while al!=co:
            d=[]
            for i in range(0, co):
                d.append(int(n**((2*i)+1))-2)
            al=isp_list(d).count(True)
            if al==co:
                ## Prints prime number and its corresponding sequence d
                print(n, d)
            n=sympy.ntheory.nextprime(n)
        co=co+1

Extensions

a(7) from Bert Dobbelaere, Aug 30 2020
Showing 1-3 of 3 results.