cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A240438 Greatest minimal difference between numbers of adjacent cells in a regular hexagonal honeycomb of order n with cells numbered from 1 through the total number of cells, the order n corresponding to the number of cells on one side of the honeycomb.

Original entry on oeis.org

0, 1, 5, 11, 18, 28, 40, 53, 69, 87, 106, 128, 152, 177, 205, 235, 266, 300, 336, 373, 413, 455, 498, 544, 592, 641, 693, 747, 802, 860, 920, 981, 1045, 1111, 1178, 1248, 1320, 1393, 1469, 1547, 1626, 1708, 1792, 1877, 1965, 2055, 2146, 2240, 2336, 2433, 2533, 2635
Offset: 1

Views

Author

Jörg Zurkirchen, Apr 05 2014

Keywords

Comments

Difference table of a(n), with a(0)=0 and offset=0:
0, 0, 1, 5, 11, 18, 28, 40, 53, 69, ...
0, 1, 4, 6, 7, 10, 12, 13, 16, 18, ... = A047234(n+1)
1, 3, 2, 1, 3, 2, 1, 3, 2, 1, ... = A130784
2, -1, -1, 2, -1, -1, 2, -1, -1, 2, ... = -A131713(n+1)
-3, 0, 3, -3, 0, 3, -3, 0, 3, -3; ... = A099838(n+4)
3, 3, -6, 3, 3, -6, 3, 3, -6, 3, ...
0, -9, 9, 0, -9, 9, 0, -9, 9, 0, ...
-9, 18, -9, -9, 18, -9, -9, 18, -9, -9, ...
First column: see A057682. - Paul Curtz, Nov 11 2014
Diameter of the chamber graph Γ(Alt(2n+1)). Definition of this graph:
Each vertex v is a sequence (v[1],v[2],...,v[n]) of length n, where each v[i] is a 2-subset of {1,2,...,2n+1} and v[i] and v[j] are disjoint unless i=j.
Vertices u and v are connected iff either:
u and v are identical except for their first elements u[1] and v[1], or
u and v are identical except for some i for which u[i]=v[i+1] and v[i]=u[i+1] - Tim Crinion, 17 Feb 2019

Examples

			For n = 3 an example of a honeycomb with the greatest minimal difference of a(3) = 5 is:
.         __
.      __/ 7\__
.   __/15\__/13\__
.  / 4\__/ 2\__/ 1\
.  \__/10\__/ 8\__/
.  /18\__/16\__/14\
.  \__/ 5\__/ 3\__/
.  /12\__/11\__/ 9\
.  \__/19\__/17\__/
.     \__/ 6\__/
.        \__/
.
		

References

  • 22ème Championnat des jeux mathématiques et logiques - 1/4 de finale individuels 2008, problème 18, «Les ruches d’Abella»

Crossrefs

Programs

  • Magma
    [n*(n-1)-Floor((n+1)/3): n in [1..60]]; // Vincenzo Librandi, Nov 12 2014
  • Maple
    A240438:=n->n*(n-1)-floor((n+1)/3); seq(A240438(n), n=1..50); # Wesley Ivan Hurt, Apr 08 2014
  • Mathematica
    Table[n (n - 1) - Floor[(n + 1)/3], {n, 50}] (* Wesley Ivan Hurt, Apr 08 2014 *)
    CoefficientList[Series[x (x + 1) (2 x + 1) / ((1 - x)^3 (x^2 + x + 1)), {x, 0, 60}], x] (* Vincenzo Librandi, Nov 12 2014 *)
    LinearRecurrence[{2, -1, 1, -2, 1},{0, 1, 5, 11, 18},52] (* Ray Chandler, Sep 24 2015 *)

Formula

a(n) = n*(n-1)-floor((n+1)/3).
G.f.: -x^2*(x+1)*(2*x+1) / ((x-1)^3*(x^2+x+1)). - Colin Barker, Apr 08 2014
a(n+3) = a(n) + 6*n+5. - Paul Curtz, Nov 11 2014
a(n) = n^2 - (A042965(n+1)=0, 1, 3, 4, ...). - Paul Curtz, Nov 11 2014
a(n+1) = a(n) + A047234(n+1). - Paul Curtz, Nov 11 2014