cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A328492 First differences of A240510 (Numbers whose "reverse and add" process becomes palindromic at 8813200023188).

Original entry on oeis.org

9, 89, 99, 99, 198, 99, 99, 88, 11, 88, 329, 90, 90, 90, 90, 90, 90, 90, 369, 90, 90, 90, 90, 90, 90, 90, 369, 90, 90, 90, 90, 90, 90, 90, 369, 90, 90, 90, 90, 90, 90, 90, 369, 90, 90, 90, 90, 90, 90, 90, 369, 90, 90, 90, 90, 90, 90, 90, 369, 90, 90, 90, 90
Offset: 1

Views

Author

Robert Price, Oct 16 2019

Keywords

Comments

Additional patterns can be seen in the bfile.

Crossrefs

Programs

  • Mathematica
    limit = 10^3; (* Assumes that there is no palindrome if none is found before "limit" iterations *)
    Differences@Select[Range[0, 50000], (np = #; i = 0;
        While[ ! PalindromeQ[np] && i < limit,
         np = np + IntegerReverse[np]; i++];
    np == 8813200023188) &] (* Robert Price, Oct 16 2019 *)

A033665 Number of 'Reverse and Add' steps needed to reach a palindrome starting at n, or -1 if n never reaches a palindrome.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 0, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 0, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 0, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 0, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 0, 2, 3, 4, 1, 1, 1, 2, 1, 2, 2, 0, 4, 6, 1, 1, 2, 1, 2, 2, 3, 4, 0, 24, 1, 2, 1, 2, 2, 3, 4, 6, 24, 0, 1, 0, 1, 1
Offset: 0

Views

Author

Keywords

Comments

Palindromes themselves are not 'Reverse and Add!'ed, so they yield a zero!
Numbers n that may have a(n) = -1 (i.e., potential Lychrel numbers) appear in A023108. - Michael De Vlieger, Jan 11 2018
Record indices and values are given in A065198 and A065199. - M. F. Hasler, Feb 16 2020

Examples

			19 -> 19+91 = 110 -> 110+011 = 121 = palindrome, took 2 steps, so a(19)=2.
n = 89 needs 24 steps to end up with the palindrome 8813200023188. See A240510. - _Wolfdieter Lang_, Jan 12 2018
		

References

  • D. Wells, The Penguin Dictionary of Curious and Interesting Numbers Penguin Books, 1987, pp. 142-143.

Crossrefs

Equals A030547(n) - 1.
Cf. A065198, A065199 (record indices & values).

Programs

  • Mathematica
    rev[n_]:=FromDigits[Reverse[IntegerDigits[n]]];radd[n_]:=n+rev[n];
    pal[n_]:=If[n==rev[n],True,False];
    raddN[n_]:=Length[NestWhileList[radd[#]&,n,pal[#]==False&]]-1;
    raddN/@Range[0,195] (* Ivan N. Ianakiev, Aug 31 2015 *)
    With[{nn = 10^3}, Array[-1 + Length@ NestWhileList[# + IntegerReverse@ # &, #, !PalindromeQ@ # &, 1, nn] /. k_ /; k == nn -> -1 &, 200]] (* Michael De Vlieger, Jan 11 2018 *)
  • PARI
    rev(n)={d=digits(n);p="";for(i=1,#d,p=concat(Str(d[i]),p));return(eval(p))}
    a(n)=if(n==rev(n),return(0));for(k=1,10^3,i=n+rev(n);if(rev(i)==i,return(k));n=i)
    n=0;while(n<100,print1(a(n),", ");n++) \\ Derek Orr, Jul 28 2014
    
  • PARI
    A033665(n,LIM=333)={-!for(i=0,LIM,my(r=A004086(n)); n==r&&return(i); n+=r)} \\ with {A004086(n)=fromdigits(Vecrev(digits(n)))}. The second optional arg is a search limit that could be taken smaller up to very large n, e.g., 99 for n < 10^9, 200 for n < 10^14, 250 for n < 10^18: see A065199 for the records and A065198 for the n's. - M. F. Hasler, Apr 13 2019, edited Feb 16 2020
    
  • Python
    A033665 = lambda n, LIM=333: next((i for i in range(LIM) if is_A002113(n) or not(n := A004086(n)+n)), -1) # The second, optional argument is a search limit, see above. - M. F. Hasler, May 23 2024

Extensions

More terms from Patrick De Geest, Jun 15 1998
I truncated the b-file at n=195, since the value of a(196) is not presently known (cf. A006960). The old b-files are now a-files. - N. J. A. Sloane, May 09 2015

A016016 Number of iterations of Reverse and Add which lead to a palindrome, or -1 if no palindrome is ever reached.

Original entry on oeis.org

1, 1, 1, 1, 2, 2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 1, 1, 2, 1, 2, 2, 3, 1, 1, 1, 1, 2, 1, 2, 2, 3, 4, 1, 1, 1, 2, 1, 2, 2, 3, 4, 6, 1, 1, 2, 1, 2, 2, 3, 4, 6, 24, 1, 2, 1, 2, 2, 3, 4, 6, 24
Offset: 1

Views

Author

Keywords

Comments

A first 'Reverse and Add' operation is always made, even if the starting value n is already a palindrome, in contrast to the variant A033665.
It is conjectured that a(196) = -1, see A023108.
Because A061563 has offset 0 one should add a(0) = 1 here. - Wolfdieter Lang, Jan 12 2018
Record indices and values beyond a(1) = 1 and a(5) = 2 are given in A065198 and A065199: These refer to the variant A033665 (main entry with more up-to-date references), as can be seen from A065199(1..3) = (0, 1, 2) for A065198(1..3) = (0, 10, 19). But all larger records correspond to a non-palindromic index n, in which case a(n) = A033665(n). - M. F. Hasler, Feb 16 2020

Examples

			6 -> 6 + 6 = 12 -> 12 + 21 = 33 is palindromic, took 2 steps so a(6)=2.
n = 89 needs 24 steps to end up with the palindrome 8813200023188. See A240510. - _Wolfdieter Lang_, Jan 12 2018
		

Crossrefs

Programs

  • Mathematica
    tol = 1000; r[n_] := FromDigits[Reverse[IntegerDigits[n]]]; palQ[n_] := n == r[n]; ar[n_] := n + r[n]; Table[k = 0; If[palQ[n], n = ar[n]; k = 1]; While[! palQ[n] && k < tol, n = ar[n]; k++]; If[k == tol, k = -1]; k, {n, 98}] (* Jayanta Basu, Jul 11 2013 *)
    With[{nn = 10^3}, Array[-1 + Length@ NestWhileList[# + IntegerReverse@ # &, #, ! PalindromeQ@ # &, {2, 1}, 10^3] /. k_ /; k == nn -> -1 &, 200, 0]] (* Michael De Vlieger, Jan 11 2018 *)
  • PARI
    a(n) = my(x=n, i=0); while(1, x=x+eval(concat(Vecrev(Str(x)))); i++; if(x==eval(concat(Vecrev(Str(x)))), return(i))) \\ Felix Fröhlich, Jan 12 2018
    
  • PARI
    A016016(n, LIM=exponent(n+1)*5)={-!for(i=0, LIM, my(r=A004086(n)); n==r&&i&&return(i); n+=r)} \\ with {A004086(n)=fromdigits(Vecrev(digits(n)))}. The second optional arg is a search limit, with default value chosen according to known records A065199 and indices A065198. - M. F. Hasler, Feb 16 2020

A243238 Table T(n,r) of terms in the reverse and add sequences of positive integers n read by antidiagonals.

Original entry on oeis.org

1, 2, 2, 4, 4, 3, 8, 8, 6, 4, 16, 16, 12, 8, 5, 77, 77, 33, 16, 10, 6, 154, 154, 66, 77, 11, 12, 7, 605, 605, 132, 154, 22, 33, 14, 8, 1111, 1111, 363, 605, 44, 66, 55, 16, 9, 2222, 2222, 726, 1111, 88, 132, 110, 77, 18, 10, 4444, 4444, 1353, 2222, 176, 363, 121, 154, 99, 11, 11
Offset: 1

Views

Author

Felix Fröhlich, Jun 12 2014

Keywords

Examples

			T(5,6) = 88, since 88 is the 6th term in the reverse and add sequence of 5.
Table starts with:
  1 2 4 8 16 77 154 605 1111 2222
  2 4 8 16 77 154 605 1111 2222 4444
  3 6 12 33 66 132 363 726 1353 4884
  4 8 16 77 154 605 1111 2222 4444 8888
  5 10 11 22 44 88 176 847 1595 7546
  6 12 33 66 132 363 726 1353 4884 9768
  7 14 55 110 121 242 484 968 1837 9218
  8 16 77 154 605 1111 2222 4444 8888 17776
  9 18 99 198 1089 10890 20691 40293 79497 158994
  10 11 22 44 88 176 847 1595 7546 14003
		

Crossrefs

Rows n=1, 3, 5, 7, 9 give: A001127, A033648, A033649, A033650, A033651.
Main diagonal gives A244058.

Programs

  • Maple
    T:= proc(n, r) option remember; `if`(r=1, n, (h-> h +(s->
          parse(cat(s[-i]$i=1..length(s))))(""||h))(T(n, r-1)))
        end:
    seq(seq(T(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Jun 18 2014
  • Mathematica
    rad[n_] := n + FromDigits[Reverse[IntegerDigits[n]]];
    T[n_, 1] := n; T[n_, k_] := T[n, k] = rad[T[n, k-1]];
    Table[T[n-k+1, k], {n, 1, 12}, {k, n, 1, -1}] // Flatten (* Jean-François Alcover, Apr 08 2016 *)
Showing 1-4 of 4 results.