A240876 Expansion of (1 + x)^11 / (1 - x)^12.
1, 23, 265, 2047, 11969, 56695, 227305, 795455, 2485825, 7059735, 18474633, 45046719, 103274625, 224298231, 464387817, 921406335, 1759885185, 3248227095, 5812626185, 10113604735, 17152640321, 28418229623, 46082942185, 73265596607, 114375683009
Offset: 0
References
- E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 230 (paragraph 3.6.6).
Links
- Bruno Berselli, Table of n, a(n) for n = 0..1000
- D. Bump, K. Choi, P. Kurlberg, and J. Vaaler, A local Riemann hypothesis, I pages 16 and 17.
- OEIS Wiki, Centered orthoplex numbers, see Table of formulas and values (row 11).
- Index entries for linear recurrences with constant coefficients, signature (12,-66,220,-495,792,-924,792,-495,220,-66,12,-1).
Crossrefs
Programs
-
Magma
m:=30; R
:=PowerSeriesRing(Integers(),m); Coefficients(R!((1+x)^11/(1-x)^12)); -
Mathematica
CoefficientList[Series[(1 + x)^11/(1 - x)^12, {x, 0, 30}], x] LinearRecurrence[{12,-66,220,-495,792,-924,792,-495,220,-66,12,-1},{1,23,265,2047,11969,56695,227305,795455,2485825,7059735,18474633,45046719},30] (* Harvey P. Dale, Apr 15 2018 *)
-
Maxima
makelist(coeff(taylor((1+x)^11/(1-x)^12, x, 0, n), x, n), n, 0, 30);
-
PARI
Vec((1+x)^11/(1-x)^12+O(x^30))
-
Sage
m = 30; L.
= PowerSeriesRing(ZZ, m) f = (1+x)^11/(1-x)^12 print(f.coefficients())
Formula
G.f.: (1 + x)^11 / (1 - x)^12.
a(n) = 12*a(n-1) - 66*a(n-2) + 220*a(n-3) - 495*a(n-4) + 792*a(n-5) - 924*a(n-6) + 792*a(n-7) - 495*a(n-8) + 220*a(n-9) - 66*a(n-10) + 12*a(n-11) - a(n-12), with initial values as shown.
a(n) = (2*n + 1)*(2*n*(n + 1)*(n^2 + n + 5)*(2*n^2 + 2*n + 51)*(n^4 + 2*n^3 + 68*n^2 + 67*n + 537)/155925 + 1).
Sum_{n >= 0} 1/a(n) = 1.047847848425287358769594801715758965260...
a(n) = Sum_{k = 0..min(11,n)} 2^k*binomial(11,k)*binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
Extensions
Edited by M. F. Hasler, May 07 2018
Comments