cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A001844 Centered square numbers: a(n) = 2*n*(n+1)+1. Sums of two consecutive squares. Also, consider all Pythagorean triples (X, Y, Z=Y+1) ordered by increasing Z; then sequence gives Z values.

Original entry on oeis.org

1, 5, 13, 25, 41, 61, 85, 113, 145, 181, 221, 265, 313, 365, 421, 481, 545, 613, 685, 761, 841, 925, 1013, 1105, 1201, 1301, 1405, 1513, 1625, 1741, 1861, 1985, 2113, 2245, 2381, 2521, 2665, 2813, 2965, 3121, 3281, 3445, 3613, 3785, 3961, 4141, 4325, 4513
Offset: 0

Views

Author

Keywords

Comments

These are Hogben's central polygonal numbers denoted by
...2...
....P..
...4.n.
Numbers of the form (k^2+1)/2 for k odd.
(y(2x+1))^2 + (y(2x^2+2x))^2 = (y(2x^2+2x+1))^2. E.g., let y = 2, x = 1; (2(2+1))^2 + (2(2+2))^2 = (2(2+2+1))^2, (2(3))^2 + (2(4))^2 = (2(5))^2, 6^2 + 8^2 = 10^2, 36 + 64 = 100. - Glenn B. Cox (igloos_r_us(AT)canada.com), Apr 08 2002
a(n) is also the number of 3 X 3 magic squares with sum 3(n+1). - Sharon Sela (sharonsela(AT)hotmail.com), May 11 2002
For n > 0, a(n) is the smallest k such that zeta(2) - Sum_{i=1..k} 1/i^2 <= zeta(3) - Sum_{i=1..n} 1/i^3. - Benoit Cloitre, May 17 2002
Number of convex polyominoes with a 2 X (n+1) minimal bounding rectangle.
The prime terms are given by A027862. - Lekraj Beedassy, Jul 09 2004
First difference of a(n) is 4n = A008586(n). Any entry k of the sequence is followed by k + 2*(1 + sqrt(2k - 1)). - Lekraj Beedassy, Jun 04 2006
Integers of the form 1 + x + x^2/2 (generating polynomial is Schur's polynomial as in A127876). - Artur Jasinski, Feb 04 2007
If X is an n-set and Y and Z disjoint 2-subsets of X then a(n-4) is equal to the number of 4-subsets of X intersecting both Y and Z. - Milan Janjic, Aug 26 2007
Row sums of triangle A132778. - Gary W. Adamson, Sep 02 2007
Binomial transform of [1, 4, 4, 0, 0, 0, ...]; = inverse binomial transform of A001788: (1, 6, 24, 80, 240, ...). - Gary W. Adamson, Sep 02 2007
Narayana transform (A001263) of [1, 4, 0, 0, 0, ...]. Equals A128064 (unsigned) * [1, 2, 3, ...]. - Gary W. Adamson, Dec 29 2007
k such that the Diophantine equation x^3 - y^3 = x*y + k has a solution with y = x-1. If that solution is (x,y) = (m+1,m) then m^2 + (m+1)^2 = k. Note that this Diophantine equation is an elliptic curve and (m+1,m) is an integer point on it. - James R. Buddenhagen, Aug 12 2008
Numbers k such that (k, k, 2*k-2) are the sides of an isosceles triangle with integer area. Also, k such that 2*k-1 is a square. - James R. Buddenhagen, Oct 17 2008
a(n) is also the least weight of self-conjugate partitions having n+1 different odd parts. - Augustine O. Munagi, Dec 18 2008
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) = A153869 * (1, 2, 3, ...). - Gary W. Adamson, Jan 03 2009
Prefaced with a "1": (1, 1, 5, 13, 25, 41, ...) where a(n) = 2n*(n-1)+1, all tuples of square numbers (X-Y, X, X+Y) are produced by ((m*(a(n)-2n))^2, (m*a(n))^2, (m*(a(n)+2n-2))^2) where m is a whole number. - Doug Bell, Feb 27 2009
Equals (1, 2, 3, ...) convolved with (1, 3, 4, 4, 4, ...). E.g., a(3) = 25 = (1, 2, 3, 4) dot (4, 4, 3, 1) = (4 + 8 + 9 + 4). - Gary W. Adamson, May 01 2009
The running sum of squares taken two at a time. - Al Hakanson (hawkuu(AT)gmail.com), May 18 2009
Equals the odd integers convolved with (1, 2, 2, 2, ...). - Gary W. Adamson, May 25 2009
Equals the triangular numbers convolved with [1, 2, 1, 0, 0, 0, ...]. - Gary W. Adamson & Alexander R. Povolotsky, May 29 2009
When the positive integers are written in a square array by diagonals as in A038722, a(n) gives the numbers appearing on the main diagonal. - Joshua Zucker, Jul 07 2009
The finite continued fraction [n,1,1,n] = (2n+1)/(2n^2 + 2n + 1) = (2n+1)/a(n); and the squares of the first two denominators of the convergents = a(n). E.g., the convergents and value of [4,1,1,4] = 1/4, 1/5, 2/9, 9/41 where 4^2 + 5^2 = 41. - Gary W. Adamson, Jul 15 2010
From Keith Tyler, Aug 10 2010: (Start)
Running sum of A008574.
Square open pyramidal number; that is, the number of elements in a square pyramid of height (n) with only surface and no bottom nodes. (End)
For k>0, x^4 + x^2 + k factors over the integers iff sqrt(k) is in this sequence. - James R. Buddenhagen, Aug 15 2010
Create the simple continued fraction from Pythagorean triples to get [2n + 1; 2n^2 + 2n, 2n^2 + 2n + 1]; its value equals the rational number 2n + 1 + a(n) / (4n^4 + 8n^3 + 6n^2 + 2n + 1). - J. M. Bergot, Sep 30 2011
a(n), n >= 1, has in its prime number factorization only primes of the form 4*k+1, i.e., congruent to 1 (mod 4) (see A002144). This follows from the fact that a(n) is a primitive sum of two squares and odd. See Theorem 3.20, p. 164, in the given Niven-Zuckerman-Montgomery reference. E.g., a(3) = 25 = 5^2, a(6) = 85 = 5*17. - Wolfdieter Lang, Mar 08 2012
From Ant King, Jun 15 2012: (Start)
a(n) is congruent to 1 (mod 4) for all n.
The digital roots of the a(n) form a purely periodic palindromic 9-cycle 1, 5, 4, 7, 5, 7, 4, 5, 1.
The units' digits of the a(n) form a purely periodic palindromic 5-cycle 1, 5, 3, 5, 1.
(End)
Number of integer solutions (x,y) of |x| + |y| <= n. Geometrically: number of lattice points inside a square with vertices (n,0), (0,-n), (-n,0), (0,n). - César Eliud Lozada, Sep 18 2012
(a(n)-1)/a(n) = 2*x / (1+x^2) where x = n/(n+1). Note that in this form, this is the velocity-addition formula according to the special theory of relativity (two objects traveling at 1/(n+1) slower than c relative to each other appear to travel at 1/a(n) less than c to a stationary observer). - Christian N. K. Anderson, May 20 2013 [Corrected by Rémi Guillaume, May 22 2025]
A geometric curiosity: the envelope of the circles x^2 + (y-a(n)/2)^2 = ((2n+1)/2)^2 is the parabola y = x^2, the n=0 circle being the osculating circle at the parabola vertex. - Jean-François Alcover, Dec 02 2013
Draw n ellipses in the plane (n>0), any 2 meeting in 4 points; a(n-1) gives the number of internal regions into which the plane is divided (cf. A051890, A046092); a(n-1) = A051890(n) - 1 = A046092(n-1) + 1. - Jaroslav Krizek, Dec 27 2013
a(n) is also, of course, the scalar product of the 2-vector (n, n+1) (or (n+1, n)) with itself. The unique inverse of (n, n+1) as vector in the Clifford algebra over the Euclidean 2-space is (1/a(n))(0, n, n+1, 0) (similarly for the other vector). In general the unique inverse of such a nonzero vector v (odd element in Cl_2) is v^(-1) = (1/|v|^2) v. Note that the inverse with respect to the scalar product is not unique for any nonzero vector. See the P. Lounesto reference, sects. 1.7 - 1.12, pp. 7-14. See also the Oct 15 2014 comment in A147973. - Wolfdieter Lang, Nov 06 2014
Subsequence of A004431, for n >= 1. - Bob Selcoe, Mar 23 2016
Numbers k such that 2k - 1 is a perfect square. - Juri-Stepan Gerasimov, Apr 06 2016
The number of active (ON, black) cells in n-th stage of growth of two-dimensional cellular automaton defined by "Rule 574", based on the 5-celled von Neumann neighborhood. - Robert Price, May 13 2016
a(n) is the first integer in a sum of (2*n + 1)^2 consecutive integers that equals (2*n + 1)^4. - Patrick J. McNab, Dec 24 2016
Central elements of odd-length rows of the triangular array of positive integers. a(n) is the mean of the numbers in the (2*n + 1)-th row of this triangle. - David James Sycamore, Aug 01 2018
Intersection of A000982 and A080827. - David James Sycamore, Aug 07 2018
An off-diagonal of the array of Delannoy numbers, A008288, (or a row/column when the array is shown as a square). As such, this is one of the crystal ball sequences. - Jack W Grahl, Feb 15 2021 and Shel Kaphan, Jan 18 2023
a(n) appears as a solution to a "Riddler Express" puzzle on the FiveThirtyEight website. The Jan 21 2022 issue (problem) and the Jan 28 2022 issue (solution) present the following puzzle and include a proof. - Fold a square piece of paper in half, obtaining a rectangle. Fold again to obtain a square with 1/4 the size of the original square. Then make n cuts through the folded paper. a(n) is the greatest number of pieces of the unfolded paper after the cutting. - Manfred Boergens, Feb 22 2022
a(n) is (1/6) times the number of 2 X 2 triangles in the n-th order hexagram with 12*n^2 cells. - Donghwi Park, Feb 06 2024
If k is a centered square number, its index in this sequence is n = (sqrt(2k-1)-1)/2. - Rémi Guillaume, Mar 30 2025.
Row sums of the symmetric triangle of odd numbers [1]; [1, 3, 1]; [1, 3, 5, 3, 1]; [1, 3, 5, 7, 5, 3, 1]; .... - Marco Zárate, Jun 15 2025

Examples

			G.f.: 1 + 5*x + 13*x^2 + 25*x^3 + 41*x^4 + 61*x^5 + 85*x^6 + 113*x^7 + 145*x^8 + ...
The first few triples are (1,0,1), (3,4,5), (5,12,13), (7,24,25), ...
The first four such partitions, corresponding to n = 0,1,2,3, i.e., to a(n) = 1,5,13,25, are 1, 3+1+1, 5+3+3+1+1, 7+5+5+3+3+1+1. - _Augustine O. Munagi_, Dec 18 2008
		

References

  • T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 3.
  • A. H. Beiler, Recreations in the Theory of Numbers. New York: Dover, p. 125, 1964.
  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • John H. Conway and Richard K. Guy, The Book of Numbers, New York: Springer-Verlag, 1996. See p. 50.
  • Pertti Lounesto, Clifford Algebras and Spinors, second edition, Cambridge University Press, 2001.
  • S. Mukai, An Introduction to Invariants and Moduli, Cambridge, 2003; see p. 483.
  • Ivan Niven, Herbert S. Zuckerman and Hugh L. Montgomery, An Introduction to the Theory Of Numbers, Fifth Edition, John Wiley and Sons, Inc., NY 1991.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
  • Travers et al., The Mysterious Lost Proof, Using Advanced Algebra, (1976), pp. 27.

Crossrefs

X values are A005408; Y values are A046092.
Cf. A008586 (first differences), A005900 (partial sums), A254373 (digital roots).
Subsequence of A004431.
Right edge of A055096; main diagonal of A069480, A078475, A129312.
Row n=2 (or column k=2) of A008288.
Cf. A016754.

Programs

  • Haskell
    a001844 n = 2 * n * (n + 1) + 1
    a001844_list = zipWith (+) a000290_list $ tail a000290_list
    -- Reinhard Zumkeller, Dec 04 2012
    
  • Magma
    [2*n^2 + 2*n + 1: n in [0..50]]; // Vincenzo Librandi, Jan 19 2013
    
  • Magma
    [n: n in [0..4400] | IsSquare(2*n-1)]; // Juri-Stepan Gerasimov, Apr 06 2016
    
  • Maple
    A001844:=-(z+1)**2/(z-1)**3; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    Table[2n(n + 1) + 1, {n, 0, 50}]
    FoldList[#1 + #2 &, 1, 4 Range@ 50] (* Robert G. Wilson v, Feb 02 2011 *)
    maxn := 47; Flatten[Table[SeriesCoefficient[Series[(n + (n - 1)*x)/(1 - x)^2, {x, 0, maxn}], k], {n, maxn}, {k, n - 1, n - 1}]] (* L. Edson Jeffery, Aug 24 2014 *)
    CoefficientList[ Series[-(x^2 + 2x + 1)/(x - 1)^3, {x, 0, 48}], x] (* or *)
    LinearRecurrence[{3, -3, 1}, {1, 5, 13}, 48] (* Robert G. Wilson v, Aug 01 2018 *)
    Total/@Partition[Range[0,50]^2,2,1] (* Harvey P. Dale, Dec 05 2020 *)
    Table[ j! Coefficient[Series[Exp[x]*(1 + 4*x + 2*x^2), {x, 0, 20}], x,
    j], {j, 0, 20}] (* Nikolaos Pantelidis, Feb 07 2023 *)
  • PARI
    {a(n) = 2*n*(n+1) + 1};
    
  • PARI
    x='x+O('x^200); Vec((1+x)^2/(1-x)^3) \\ Altug Alkan, Mar 23 2016
    
  • Python
    print([2*n*(n+1)+1 for n in range(48)]) # Michael S. Branicky, Jan 05 2021
  • Sage
    [i**2 + (i + 1)**2 for i in range(46)] # Zerinvary Lajos, Jun 27 2008
    

Formula

a(n) = 2*n^2 + 2*n + 1 = n^2 + (n+1)^2.
a(n) = 1 + 3 + 5 + ... + 2*n-1 + 2*n+1 + 2*n-1 + ... + 3 + 1. - Amarnath Murthy, May 28 2001
a(n) = 1/real(z(n+1)) where z(1)=i, (i^2=-1), z(k+1) = 1/(z(k)+2i). - Benoit Cloitre, Aug 06 2002
Nearest integer to 1/Sum_{k>n} 1/k^3. - Benoit Cloitre, Jun 12 2003
G.f.: (1+x)^2/(1-x)^3.
E.g.f.: exp(x)*(1+4x+2x^2).
a(n) = a(n-1) + 4n.
a(-n) = a(n-1).
a(n) = A064094(n+3, n) (fourth diagonal).
a(n) = 1 + Sum_{j=0..n} 4*j. - Xavier Acloque, Oct 08 2003
a(n) = A046092(n)+1 = (A016754(n)+1)/2. - Lekraj Beedassy, May 25 2004
a(n) = Sum_{k=0..n+1} (-1)^k*binomial(n, k)*Sum_{j=0..n-k+1} binomial(n-k+1, j)*j^2. - Paul Barry, Dec 22 2004
a(n) = ceiling((2n+1)^2/2). - Paul Barry, Jul 16 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3), a(0)=1, a(1)=5, a(2)=13. - Jaume Oliver Lafont, Dec 02 2008
a(n)*a(n-1) = 4*n^4 + 1 for n > 0. - Reinhard Zumkeller, Feb 12 2009
Prefaced with a "1" (1, 1, 5, 13, 25, 41, ...): a(n) = 2*n*(n-1)+1. - Doug Bell, Feb 27 2009
a(n) = sqrt((A056220(n)^2 + A056220(n+1)^2) / 2). - Doug Bell, Mar 08 2009
a(n) = floor(2*(n+1)^3/(n+2)). - Gary Detlefs, May 20 2010
a(n) = A000330(n) - A000330(n-2). - Keith Tyler, Aug 10 2010
a(n) = A069894(n)/2. - J. M. Bergot, Jun 11 2012
a(n) = 2*a(n-1) - a(n-2) + 4. - Ant King, Jun 12 2012
Sum_{n>=0} 1/a(n) = (Pi/2)*tanh(Pi/2) = 1.4406595199775... = A228048. - Ant King, Jun 15 2012
a(n) = A209297(2*n+1,n+1). - Reinhard Zumkeller, Jan 19 2013
a(n)^3 = A048395(n)^2 + A048395(-n-1)^2. - Vincenzo Librandi, Jan 19 2013
a(n) = A000217(2n+1) - n. - Ivan N. Ianakiev, Nov 08 2013
a(n) = A251599(3*n+1). - Reinhard Zumkeller, Dec 13 2014
a(n) = A101321(4,n). - R. J. Mathar, Jul 28 2016
From Ilya Gutkovskiy, Jul 30 2016: (Start)
a(n) = Sum_{k=0..n} A008574(k).
Sum_{n>=0} (-1)^(n+1)*a(n)/n! = exp(-1) = A068985. (End)
a(n) = 4 * A000217(n) + 1. - Bruce J. Nicholson, Jul 10 2017
a(n) = A002522(n) + A005563(n) = A002522(n+1) + A005563(n-1). - Bruce J. Nicholson, Aug 05 2017
Sum_{n>=0} a(n)/n! = 7*e. Sum_{n>=0} 1/a(n) = A228048. - Amiram Eldar, Jun 20 2020
a(n) = A000326(n+1) + A000217(n-1). - Charlie Marion, Nov 16 2020
a(n) = Integral_{x=0..2n+2} |1-x| dx. - Pedro Caceres, Dec 29 2020
From Amiram Eldar, Feb 17 2021: (Start)
Product_{n>=0} (1 + 1/a(n)) = cosh(sqrt(3)*Pi/2)*sech(Pi/2).
Product_{n>=1} (1 - 1/a(n)) = Pi*csch(Pi)*sinh(Pi/2). (End)
a(n) = A001651(n+1) + 1 - A028242(n). - Charlie Marion, Apr 05 2022
a(n) = A016754(n) - A046092(n). - Leo Tavares, Sep 16 2022
For n>0, a(n) = A101096(n+2) / 30. - Andy Nicol, Feb 06 2025
From Rémi Guillaume, Apr 21 2025: (Start)
a(n) = (2*A003215(n)+1)/3.
a(n) = (4*A005448(n+1)-1)/3.
a(n) + a(n-1) = A001845(n) - A001845(n-1), for n >= 1.
a(n) = (A005917(n+1))/(2n+1). (End)

Extensions

Partially edited by Joerg Arndt, Mar 11 2010

A001845 Centered octahedral numbers (crystal ball sequence for cubic lattice).

Original entry on oeis.org

1, 7, 25, 63, 129, 231, 377, 575, 833, 1159, 1561, 2047, 2625, 3303, 4089, 4991, 6017, 7175, 8473, 9919, 11521, 13287, 15225, 17343, 19649, 22151, 24857, 27775, 30913, 34279, 37881, 41727, 45825, 50183, 54809, 59711, 64897, 70375, 76153, 82239
Offset: 0

Views

Author

Keywords

Comments

Number of points in simple cubic lattice at most n steps from origin.
If X is an n-set and Y_i (i=1,2,3) mutually disjoint 2-subsets of X then a(n-6) is equal to the number of 6-subsets of X intersecting each Y_i (i=1,2,3). - Milan Janjic, Aug 26 2007
Equals binomial transform of [1, 6, 12, 8, 0, 0, 0, ...] where (1, 6, 12, 8) = row 3 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=2,(i>1), A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n >= 4, a(n-2) = -coeff(charpoly(A,x),x^(n-3)). - Milan Janjic, Jan 26 2010
a(n) = A005408(n) * A097080(n-1) / 3. - Reinhard Zumkeller, Dec 15 2013
a(n) = D(3,n) where D are the Delannoy numbers (A008288). As such, a(n) gives the number of grid paths from (0,0) to (3,n) using steps that move one unit north, east, or northeast. - David Eppstein, Sep 07 2014
The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^3 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 3 from any given point. - Shel Kaphan, Jan 02 2023

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Sums of 2 consecutive terms give A008412.
(1/12)*t*(2*n^3 - 3*n^2 + n) + 2*n - 1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
Partial sums of A005899.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.
Row/column 3 of A008288.

Programs

Formula

G.f.: (1+x)^3 /(1-x)^4. [conjectured (correctly) by Simon Plouffe in his 1992 dissertation]
a(n) = (2*n+1)*(2*n^2 + 2*n + 3)/3.
First differences of A014820(n). - Alexander Adamchuk, May 23 2006
a(n) = a(n-1) + 4*n^2 + 2, a(0)=1. - Vincenzo Librandi, Mar 27 2011
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4), with a(0)=1, a(1)=7, a(2)=25, a(3)=63. - Harvey P. Dale, Jun 05 2013
a(n) = Sum_{k=0..min(3,n)} 2^k * binomial(3,k) * binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
From Luciano Ancora, Jan 08 2015: (Start)
a(n) = 2 * A000330(n) + A000330(n+1) + A000330(n-1).
a(n) = A005900(n) + A005900(n+1).
a(n) = A005900(n) + A000330(n) + A000330(n+1).
a(n) = A000330(n-1) + A000330(n) + A005900(n+1). (End)
a(n) = A002412(n+1) + A016061(n-1) for n > 0. - Bruce J. Nicholson, Nov 12 2017
E.g.f.: exp(x)*(3 + 18*x + 18*x^2 + 4*x^3)/3. - Stefano Spezia, Mar 14 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 5/6 - log(2) = (1 - 1/2 + 1/3) - log(2). - Peter Bala, Mar 21 2024

A001846 Centered 4-dimensional orthoplex numbers (crystal ball sequence for 4-dimensional cubic lattice).

Original entry on oeis.org

1, 9, 41, 129, 321, 681, 1289, 2241, 3649, 5641, 8361, 11969, 16641, 22569, 29961, 39041, 50049, 63241, 78889, 97281, 118721, 143529, 172041, 204609, 241601, 283401, 330409, 383041, 441729, 506921, 579081, 658689, 746241, 842249, 947241, 1061761, 1186369
Offset: 0

Views

Author

Keywords

Comments

a(n) is the number of points in the Z^4 lattice that are at distance at most n from the origin in the adjacency graph. - N. J. A. Sloane, Feb 19 2013
Number of nodes of degree 8 in virtual, optimal, chordal graphs of diameter d(G)=n. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002
If Y_i (i=1,2,3,4) are 2-blocks of an (n+4)-set X then a(n-4) is the number of 8-subsets of X intersecting each Y_i (i=1,2,3,4). - Milan Janjic, Oct 28 2007
Equals binomial transform of [1, 8, 24, 32, 16, 0, 0, 0, ...] where (1, 8, 24, 32, 16) = row 4 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
Comment from Ben Thurston, Feb 18 2013: In the plane, if you make a picture by taking one unit step in each of the basic 8 directions from a central dot, then from each of those going one unit step in each of the eight directions, ... (see illustration), it appears that the number of dots in the picture after n steps is equal to a(n). Response from N. J. A. Sloane, Feb 19 2013: This is correct, and follows from the fact that the Z-module Z[1,i,(+-1+i)/sqrt(2)] is essentially a copy of the Z^4 lattice.
a(n) = D(4,n) where D are the Delannoy numbers (A008288). As such, a(n) gives the number of grid paths from (0,0) to (4,n) using steps that move one unit north, east, or northeast. - Jack W Grahl, Feb 15 2021
The first comment above can be re-expressed and generalized as follows: a(n) is the number of points in Z^4 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 4 from any given point. - Shel Kaphan, Jan 02 2023

Examples

			a(6)=1289: (2*6^4 + 4*6^3 + 10*6^2 + 8*6 + 3) / 3 = (2592 + 864 + 360 + 48 + 3) / 3 = 3867 / 3 = 1289.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

First differences are A008412.
Cf. A240876.
Row/column 4 of A008288.

Programs

  • Maple
    for n from 1 to k do eval((2*n^4+4*n^3+10*n^2+8*n+3)/3) od;
    A001846:=-(z+1)**4/(z-1)**5; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(-z^4-4 z^3-6 z^2-4 z-1)/(z-1)^5, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
    Table[(((2 n + 4) n + 10) n + 8) n/3 + 1, {n, 0, 30}] (* Robert A. Russell, Jul 02 2025 *)

Formula

G.f.: (1+x)^4 /(1-x)^5.
a(n) = (2*n^4 + 4*n^3 + 10*n^2 + 8*n + 3)/3. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002
From Jonathan Vos Post, Mar 15 2006: (Start)
a(n) = Sum_{i=0..n} A008412(i);
a(n) = Sum_{i=0..n} 8*i*(i^2 + 2)/3;
a(n) = Sum_{i=0..n} 8*i*(A059100(i))/3. (End)
a(n) = Sum_{k=0..min(4,n)} 2^k * binomial(4,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
E.g.f.: exp(x)*(3 + 24*x + 36*x^2 + 16*x^3 + 2*x^4)/3. - Stefano Spezia, Mar 14 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = log(2) - 7/12 = log(2) - (1 - 1/2 + 1/3 - 1/4). - Peter Bala, Mar 23 2024

A001847 Crystal ball sequence for 5-dimensional cubic lattice.

Original entry on oeis.org

1, 11, 61, 231, 681, 1683, 3653, 7183, 13073, 22363, 36365, 56695, 85305, 124515, 177045, 246047, 335137, 448427, 590557, 766727, 982729, 1244979, 1560549, 1937199, 2383409, 2908411, 3522221, 4235671, 5060441, 6009091, 7095093, 8332863, 9737793, 11326283
Offset: 0

Views

Author

Keywords

Comments

Number of nodes degree 10 in virtual, optimal chordal graphs of diameter d(G)=n - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002
If Y_i (i=1,2,3,4,5) are 2-blocks of a (n+5)-set X then a(n-5) is the number of 10-subsets of X intersecting each Y_i (i=1,2,3,4,5). - Milan Janjic, Oct 28 2007
Equals binomial transform of [1, 10, 40, 80, 80, 32, 0, 0, 0, ...] where (1, 10, 40, 80, 80, 32) = row 5 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
a(n) is the number of points in Z^5 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 5 from any given point. - Shel Kaphan, Jan 02 2023

Examples

			a(5)=1683, (4*5^5 + 10*5^4 + 40*5^3 + 50*5^2 + 46*5 + 15)/15 = (12500 + 6250 + 5000 + 230 + 15)/15 = 25245/15 = 1683.
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A240876.
Row/column 5 of A008288.

Programs

  • Maple
    for n from 1 to k do eval((4*n^5+10*n^4+40*n^3+50*n^2+46*n+15)/15) od;
    A001847:=(z+1)**5/(z-1)**6; # conjectured by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[(z+1)^5/(z-1)^6, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
    Table[((((4 n + 10) n + 40) n + 50) n + 46) n/15 + 1, {n, 0, 30}] (* Robert A. Russell, Jul 02 2025 *)

Formula

G.f.: (1+x)^5 /(1-x)^6.
a(n) = (4*n^5+10*n^4+40*n^3+50*n^2+46*n+15)/15. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Mar 07 2002
a(n) = Sum_{k=0..min(5,n)} 2^k * binomial(5,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
E.g.f.: exp(x)*(15 + 150*x + 300*x^2 + 200*x^3 + 50*x^4 + 4*x^5)/15. - Stefano Spezia, Mar 17 2024
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 47/60 - log(2) = (1 - 1/2 + 1/3 - 1/4 + 1/5) - log(2). - Peter Bala, Mar 23 2024

A001849 Crystal ball sequence for 7-dimensional cubic lattice.

Original entry on oeis.org

1, 15, 113, 575, 2241, 7183, 19825, 48639, 108545, 224143, 433905, 795455, 1392065, 2340495, 3800305, 5984767, 9173505, 13726991, 20103025, 28875327, 40754369, 56610575, 77500017, 104692735, 139703809, 184327311, 240673265, 311207743, 398796225, 506750351
Offset: 0

Views

Author

Keywords

Comments

This is row/column 7 of the Delannoy numbers array, A008288, which is the main entry for these numbers, listing many more properties. - Shel Kaphan, Jan 06 2023

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A240876.
Row/column 7 of A008288.

Programs

Formula

G.f.: (1+x)^7 /(1-x)^8.
a(n) = (8*n^7 + 28*n^6 + 224*n^5 + 490*n^4 + 1232*n^3 + 1372*n^2 + 1056*n + 315)/315. - Johannes W. Meijer, Jul 14 2013
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = 319/420 - log(2) = (1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7) - log(2). - Peter Bala, Mar 23 2024

A001848 Crystal ball sequence for 6-dimensional cubic lattice.

Original entry on oeis.org

1, 13, 85, 377, 1289, 3653, 8989, 19825, 40081, 75517, 134245, 227305, 369305, 579125, 880685, 1303777, 1884961, 2668525, 3707509, 5064793, 6814249, 9041957, 11847485, 15345233, 19665841, 24957661, 31388293, 39146185, 48442297, 59511829, 72616013, 88043969
Offset: 0

Views

Author

Keywords

Comments

Number of nodes of degree 12 in virtual, optimal chordal graphs of diameter d(G)=n. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Nov 25 2002
Equals binomial transform of [1, 12, 60, 160, 240, 192, 64, 0, 0, 0, ...] where (1, 12, 60, 160, 240, 192, 64) = row 6 of the Chebyshev triangle A013609. - Gary W. Adamson, Jul 19 2008
a(n) is the number of points in Z^6 that are L1 (Manhattan) distance <= n from any given point. Equivalently, due to a symmetry that is easier to see in the Delannoy numbers array (A008288), as a special case of Dmitry Zaitsev's Dec 10 2015 comment on A008288, a(n) is the number of points in Z^n that are L1 (Manhattan) distance <= 6 from any given point. - Shel Kaphan, Jan 02 2023

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 81.
  • E. Deza and M. M. Deza, Figurate numbers, World Scientific Publishing (2012), page 231.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A240876.
Row/column 6 of A008288.

Programs

  • Maple
    for n from 1 to k do eval(4/45*n^6+4/15*n^5+14/9*n^4+8/3*n^3+196/45*n^2+46/15*n+1); od;
    A001848:=-(z+1)**6/(z-1)**7; # conjectured (correctly) by Simon Plouffe in his 1992 dissertation
  • Mathematica
    CoefficientList[Series[-(z + 1)^6/(z - 1)^7, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)

Formula

G.f.: (1+x)^6 /(1-x)^7.
a(n) = (4/45)*n^6 + (4/15)*n^5 + (14/9)*n^4 + (8/3)*n^3 + (196/45)*n^2 + (46/15)*n + 1. - S. Bujnowski & B. Dubalski (slawb(AT)atr.bydgoszcz.pl), Nov 25 2002
a(n) = Sum_{k=0..min(6,n)} 2^k * binomial(6,k)* binomial(n,k). See Bump et al. - Tom Copeland, Sep 05 2014
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = log(2) - 37/60 = log(2) - (1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6). - Peter Bala, Mar 23 2024

A008419 Crystal ball sequence for 9-dimensional cubic lattice.

Original entry on oeis.org

1, 19, 181, 1159, 5641, 22363, 75517, 224143, 598417, 1462563, 3317445, 7059735, 14218905, 27298155, 50250765, 89129247, 152951073, 254831667, 413442773, 654862247, 1014889769, 1541911931, 2300409629, 3375210671, 4876601009, 6946419011, 9765268709
Offset: 0

Views

Author

Keywords

Comments

This is row/column 9 of the Delannoy numbers array, A008288, which is the main entry for these numbers, listing many more properties. - Shel Kaphan, Jan 07 2023

Crossrefs

Cf. A240876.
Row/column 9 of A008288.

Programs

  • Mathematica
    CoefficientList[Series[(z + 1)^9/(z - 1)^10, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
    LinearRecurrence[{10,-45,120,-210,252,-210,120,-45,10,-1},{1,19,181,1159,5641,22363,75517,224143,598417,1462563},40] (* Harvey P. Dale, Jul 25 2013 *)

Formula

G.f.: (1+x)^9/(1-x)^10.
a(n) = (4*n^9+18*n^8+240*n^7+756*n^6+3612*n^5+7182*n^4+14360*n^3+14724*n^2+ 10134*n+2835)/2835. - Johannes W. Meijer, Jul 14 2013
a(0)=1, a(1)=19, a(2)=181, a(3)=1159, a(4)=5641, a(5)=22363, a(6)=75517, a(7)=224143, a(8)=598417, a(9)=1462563, a(n)=10*a(n-1)-45*a(n-2)+ 120*a(n-3)- 210*a(n-4)+252*a(n-5)-210*a(n-6)+120*a(n-7)-45*a(n-8)+ 10*a(n-9)- a(n-10). - Harvey P. Dale, Jul 25 2013
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = (1 - 1/2 + 1/3 - ... + 1/9) - log(2). - Peter Bala, Mar 23 2024

A008417 Crystal ball sequence for 8-dimensional cubic lattice.

Original entry on oeis.org

1, 17, 145, 833, 3649, 13073, 40081, 108545, 265729, 598417, 1256465, 2485825, 4673345, 8405905, 14546705, 24331777, 39490049, 62390545, 96220561, 145198913, 214828609, 312193553, 446304145, 628496897, 872893441, 1196924561, 1621925137, 2173806145, 2883810113, 3789356689, 4934985233
Offset: 0

Views

Author

Keywords

Comments

This is row/column 8 of the Delannoy numbers array, A008288, which is the main entry for these numbers, listing many more properties. - Shel Kaphan, Jan 06 2023

Crossrefs

Partial sums of A008416.
Cf. A240876.
Row/Column 8 of A008288.

Programs

  • Mathematica
    CoefficientList[Series[-(z + 1)^8/(z - 1)^9, {z, 0, 200}], z] (* Vladimir Joseph Stephan Orlovsky, Jun 19 2011 *)
    LinearRecurrence[{9,-36,84,-126,126,-84,36,-9,1},{1,17,145,833,3649,13073,40081,108545,265729},40] (* Harvey P. Dale, May 26 2024 *)

Formula

G.f.: (1+x)^8/(1-x)^9.
First differences of A099196. - Alexander Adamchuk, May 23 2006
a(n) = (2*n^8 + 8*n^7 + 84*n^6 + 224*n^5 + 798*n^4 + 1232*n^3 + 1636*n^2 + 1056*n + 315)/315. - Alexander Adamchuk, May 23 2006
Sum_{n >= 1} (-1)^(n+1)/(n*a(n-1)*a(n)) = log(2) - (1 - 1/2 + 1/3 - 1/4 + 1/5 - 1/6 + 1/7 - 1/8). - Peter Bala, Mar 23 2024

Extensions

More terms from Alexander Adamchuk, May 23 2006

A008421 Crystal ball sequence for 10-dimensional cubic lattice.

Original entry on oeis.org

1, 21, 221, 1561, 8361, 36365, 134245, 433905, 1256465, 3317445, 8097453, 18474633, 39753273, 81270333, 158819253, 298199265, 540279585, 948062325, 1616336765, 2684641785, 4354393801, 6911195501, 10753517061, 16429137361, 24680949041, 36503969061
Offset: 0

Views

Author

Keywords

Comments

This is row/column 10 of the Delannoy numbers array, A008288, which is the main entry for these numbers, listing many more properties. - Peter Munn, Jan 05 2023

Crossrefs

Programs

Formula

G.f.: (1+x)^10/(1-x)^11.
a(n) = (4*n^10+20*n^9+330*n^8+1200*n^7+7392*n^6+18060*n^5+50270*n^4 +71800*n^3+83754*n^2+50670*n+14175)/14175 - Johannes W. Meijer, Jul 14 2013

A053805 Expansion of (1 + x)^12 / (1 - x)^13.

Original entry on oeis.org

1, 25, 313, 2625, 16641, 85305, 369305, 1392065, 4673345, 14218905, 39753273, 103274625, 251595969, 579168825, 1267854873, 2653649025, 5334940545, 10343052825, 19403906105, 35330137025, 62596382081, 108167252025, 182668423833, 302016962625, 489658242241
Offset: 0

Views

Author

R. K. Guy, Apr 07 2000

Keywords

Comments

This is row/column 12 of the Delannoy numbers array, A008288, which is the main entry for these numbers, listing many more properties. - Peter Munn, Jan 05 2023

Crossrefs

Programs

  • Magma
    m:=30; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1+x)^12/(1-x)^13)); // Bruno Berselli, Apr 17 2014
  • Mathematica
    CoefficientList[Series[(1 + x)^12/(1 - x)^13, {x, 0, 30}], x] (* Bruno Berselli, Apr 17 2014 *)
  • PARI
    Vec((1+x)^12/(1-x)^13+O(x^99)) \\ Charles R Greathouse IV, Sep 27 2012
    

Formula

G.f.: (1+x)^12/(1-x)^13.
a(n) = A240876(n) + 2*Sum_{i=0..n-1} A240876(i) for n>0, a(0)=1. - Bruno Berselli, Apr 17 2014
a(n) = 13*a(n-1) - 78*a(n-2) + 286*a(n-3) - 715*a(n-4) + 1287*a(n-5) - 1716*a(n-6) + 1716*a(n-7) - 1287*a(n-8) + 715*a(n-9) - 286*a(n-10) + 78*a(n-11) - 13*a(n-12) + a(n-13). - Wesley Ivan Hurt, Jul 09 2025
Showing 1-10 of 10 results.