A241209 a(n) = E(n) - E(n+1), where E(n) are the Euler numbers A122045(n).
1, 1, -1, -5, 5, 61, -61, -1385, 1385, 50521, -50521, -2702765, 2702765, 199360981, -199360981, -19391512145, 19391512145, 2404879675441, -2404879675441, -370371188237525, 370371188237525, 69348874393137901, -69348874393137901, -15514534163557086905
Offset: 0
Keywords
Links
- G. C. Greubel, Table of n, a(n) for n = 0..475
Crossrefs
Programs
-
Magma
EulerPoly:= func< n,x | (&+[ (&+[ (-1)^j*Binomial(k,j)*(x+j)^n : j in [0..k]])/2^k: k in [0..n]]) >; Euler:= func< n | 2^n*EulerPoly(n, 1/2) >; // A122045 [Euler(n) - Euler(n+1): n in [0..40]]; // G. C. Greubel, Jun 07 2023
-
Maple
A241209 := proc(n) local v, k, h, m; m := `if`(n mod 2 = 0, n, n+1); h := k -> `if`(k mod 4 = 0, 0, (-1)^iquo(k,4)); (-1)^n*add(2^iquo(-k,2)*h(k+1)*add((-1)^v*binomial(k,v)*(v+1)^m, v=0..k) ,k=0..m) end: seq(A241209(n),n=0..24); # Peter Luschny, Apr 17 2014
-
Mathematica
skp[n_, x_]:= Sum[Binomial[n, k]*EulerE[k]*x^(n-k), {k, 0, n}]; a[n_]:= skp[n, x] - skp[n+1, x]/. x->0; Table[a[n], {n, 0, 24}] (* Jean-François Alcover, Apr 17 2014, after Peter Luschny *) Table[EulerE[n] - EulerE[n+1], {n,0,30}] (* Vincenzo Librandi, Jan 24 2016 *) -Differences/@Partition[EulerE[Range[0,30]],2,1]//Flatten (* Harvey P. Dale, Apr 16 2019 *)
-
SageMath
[euler_number(n) - euler_number(n+1) for n in range(41)] # G. C. Greubel, Jun 07 2023
Formula
a(n) is the second column of the fractional array.
a(n) = (-1)^n*second column of the array in A239005(n).
a(n) = skp(n, 0) - skp(n+1, 0), where skp(n, x) are the Swiss-Knife polynomials A153641. - Peter Luschny, Apr 17 2014
E.g.f.: exp(x)/cosh(x)^2. - Sergei N. Gladkovskii, Jan 23 2016
G.f. T(0)/x-1/x, where T(k) = 1 - x*(k+1)/(x*(k+1)-(1-x)/(1-x*(k+1)/(x*(k+1)+(1-x)/T(k+1)))). - Sergei N. Gladkovskii, Jan 23 2016
Comments