cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A241243 Decimal representation of sin(Pi/17).

Original entry on oeis.org

1, 8, 3, 7, 4, 9, 5, 1, 7, 8, 1, 6, 5, 7, 0, 3, 3, 1, 5, 7, 4, 4, 0, 8, 8, 3, 9, 6, 2, 0, 7, 2, 7, 5, 8, 2, 4, 8, 9, 1, 3, 8, 5, 2, 3, 8, 4, 4, 4, 9, 9, 4, 0, 5, 8, 5, 0, 6, 5, 0, 8, 5, 7, 7, 4, 8, 9, 1, 4, 9, 2, 8, 2, 5, 3, 0, 5, 0, 1, 7, 3, 0, 3, 0, 6, 0, 1, 1, 9, 5, 1, 2, 1, 0, 7, 3, 0, 4, 8, 5, 9, 2, 9, 6, 7, 9, 7, 6, 3, 4, 0, 0, 2, 9, 7, 4, 9, 1, 6, 9
Offset: 0

Views

Author

Zak Seidov, Apr 18 2014

Keywords

Examples

			0.18374951781657033157440883962072758248913852384449940585065085774891492825305...
		

References

  • Saul Stahl, "Geometry From Euclid To Knots" Chapter 4.3, 'Regular Polygons', Courier - Dover Publications, NJ, 2009, pp. 153-154.

Programs

  • Maple
    Digits:=100: evalf(sin(Pi/17)); # Wesley Ivan Hurt, Aug 15 2014
  • Mathematica
    RealDigits[ Sin[ Pi/17], 10, 111][[1]] (* Robert G. Wilson v, Aug 14 2014 *)
    RealDigits[Root[17 - 816 x^2 + 11424 x^4 - 71808 x^6 + 239360 x^8 -
      452608 x^10 + 487424 x^12 - 278528 x^14 + 65536 x^16, 9],10,105][[1]] (* Artur Jasinski, Aug 04 2025 *)

Formula

Equals 1/4 sqrt(8 - sqrt(2*(15 + sqrt(17) - sqrt(2*(17 - sqrt(17))) + sqrt(2*(34 + 6 sqrt(17) + sqrt(2*(17 - sqrt(17))) - sqrt(34*(17 - sqrt(17))) + 8*sqrt(2*(17 + sqrt(17)))))))). - Robert G. Wilson v, Aug 14 2014
The minimal polynomial is 65536x^16 - 278528x^14 + 487424x^12 - 452608x^10 + 2398360x^8 - 71808 x^6 + 11424x^4 - 816x^2 + 17. - Robert G. Wilson v, Aug 14 2014
This^2 + A210649^2 = 1. - R. J. Mathar, Aug 31 2025

Extensions

Offset corrected by Amiram Eldar, Aug 04 2025